
UNIT 1

INTERNET AND HTML

Introduction to internet:

Definition of Internet

Internet is defined as an Information super Highway, to access information over the web.

However, It can be defined in many ways as follows:

 Internet is a world-wide global system of interconnected computer networks.

 Internet uses the standard Internet Protocol (TCP/IP).

 Every computer in internet is identified by a unique IP address.

 IP Address is a unique set of numbers (such as 110.22.33.114) which identifies a

computer location.

 A special computer DNS (Domain Name Server) is used to give name to the IP Address

so that user can locate a computer by a name.

 For example, a DNS server will resolve a name http://www.nptc.ac.in to a particular IP

address to uniquely identify the computer on which this website is hosted.

 Internet is accessible to every user all over the world.

History Of Internet (Evolution)

The concept of Internet was originated in 1969 and has undergone several technological &

Infrastructural changes as discussed below:

 The origin of Internet devised from the concept of Advanced Research Project Agency

Network (ARPANET).

 ARPANET was developed by United States Department of Defense.

 Basic purpose of ARPANET was to provide communication among the various bodies of

government.

 Initially, there were only four nodes, formally called Hosts.

 In 1972, the ARPANET spread over the globe with 23 nodes located at different

countries and thus became known as Internet.

 By the time, with invention of new technologies such as TCP/IP protocols, DNS, WWW,

browsers, scripting languages etc.,Internet provided a medium to publish and access

information over the web.

http://www.nptc.ac.in/

Advantages

 Internet covers almost every aspect of life, one can think of. Here, we will discuss some

of the advantages of Internet:

 Internet allows us to communicate with the people sitting at remote locations. There are

various apps available on the wed that uses Internet as a medium for communication.

One can find various social networking sites such as:

o Facebook

o Twitter

o Yahoo

o Google+

o Flickr

o Orkut

 One can surf for any kind of information over the internet. Information regarding various

topics such as Technology, Health & Science, Social Studies, Geographical Information,

Information Technology, Products etc can be surfed with help of a search engine.

 Apart from communication and source of information, internet also serves a medium for

entertainment. Following are the various modes for entertainment over internet.

o Online Television
o Online Games
o Songs
o Videos
o Social Networking Apps

 Internet allows us to use many services like:

o Internet Banking
o Matrimonial Services
o Online Shopping
o Online Ticket Booking
o Online Bill Payment
o Data Sharing
o E-mail

 Internet provides concept of electronic commerce, that allows the business deals to be

conducted on electronic systems

Disadvantages

However, Internet has proved to be a powerful source of information in almost every

field, yet there exists many disadvantages discussed below:

 There are always chances to loose personal information such as name, address, credit

card number. Therefore, one should be very careful while sharing such information. One

should use credit cards only through authenticated sites.

 Another disadvantage is the Spamming. Spamming corresponds to the unwanted e-

mails in bulk. These e-mails serve no purpose and lead to obstruction of entire system.

 Virus can easily be spread to the computers connected to internet. Such virus attacks

may cause your system to crash or your important data may get deleted.

 Also a biggest threat on internet is pornography. There are many pornographic sites that

can be found, letting your children to use internet which indirectly affects the children

healthy mental life.

 There are various websites that do not provide the authenticated information. This leads
to misconception among many people.

Switching

Switching is a mechanism by which data/information sent from source towards destination

which are not directly connected. Networks have interconnecting devices, which receives data

from directly connected sources, stores data, analyze it and then forwards to the next

interconnecting device closest to the destination.

Switching can be categorized as:

Packet Switching

Shortcomings of message switching gave birth to an idea of packet switching. The entire

message is broken down into smaller chunks called packets. The switching information is added

in the header of each packet and transmitted independently.

It is easier for intermediate networking devices to store small size packets and they do not take

much resources either on carrier path or in the internal memory of switches.

Packet switching enhances line efficiency as packets from multiple applications can be

multiplexed over the carrier. The internet uses packet switching technique. Packet switching

enables the user to differentiate data streams based on priorities. Packets are stored and

forwarded according to their priority to provide quality of service.

Different types of Connections

There exist several ways to connect to the internet. Following are these connection types

available:

1. Dial-up Connection
2. ISDN
3. DSL
4. ///Cable TV Internet connections ///
5. Satellite Internet connections
6. ///Wireless Internet Connections///

Dial-up Connection

Dial-up connection uses telephone line to connect PC to the internet. It requires a

modem to setup dial-up connection. This modem works as an interface between PC and the

telephone line.

There is also a communication program that instructs the modem to make a call to specific

number provided by an ISP.

Dial-up connection uses either of the following protocols:

Serial Line Internet Protocol (SLIP)

The Serial Line Internet Protocol (also SLIP) is an encapsulation of the

Internet Protocol designed to work over serial ports and modem connections. It is documented

in RFC 1055.

Point to Point Protocol (PPP)

In computer networking, Point-to-Point Protocol(PPP) is a data link (layer

2) protocol used to establish a direct connection between two nodes. It can provide connection

authentication, transmission encryption (using ECP, RFC 1968), and compression.

The following diagram shows the accessing internet using modem:

ISDN

ISDN is acronym of Integrated Services Digital Network. It establishes the connection

using the phone lines which carry digital signals instead of analog signals.

There are two techniques to deliver ISDN services:

1. Basic Rate Interface (BRI)
2. Primary Rate Interface (PRI)

Key points:

The BRI ISDN consists of three distinct channels on a single ISDN line: t1o 64kbps B

(Bearer) channel and one 16kbps D (Delta or Data) channels.

The PRI ISDN consists of 23 B channels and one D channels with both have operating

capacity of 64kbps individually making a total transmission rate of 1.54Mbps.

The following diagram shows accessing internet using ISDN connection:

ISDN Advantages

 The basic advantage of ISDN is to facilitate the user with multiple digital channels.

These channels can operate concurrently through the same one copper wire pair.

 The digital signals broadcasting transversely the telephone lines.

 ISDN provides high data rate because of digital scheme which is 56kbps.

 ISDN network lines are able to switch manifold devices on the single line such as faxes,

computers, cash registers credit cards readers, and many other devices. These all

devices can work together and directly be connected to a single line.

 ISDN takes only 2 seconds to launch a connection while other modems take 30 to 60

second for establishment.

ISDN Disadvantages

 The disadvantage of ISDN lines is that it is very costly than the other typical telephone

system.

 ISDN requires specialized digital devices just like Telephone Company.

DSL

DSL is acronym of Digital Subscriber Line. It is a form of broadband connection as it

provides connection over ordinary telephone lines.

 Following are the several versions of DSL technique available today:

 Asymmetric DSL (ADSL)

 Symmetric DSL (SDSL)

 High bit-rate DSL (HDSL)

 Rate adaptive DSL (RDSL)

 Very high bit-rate DSL (VDSL)

 ISDN DSL (IDSL)

All of the above mentioned technologies differ in their upload and download speed, bit

transfer rate and level of service.

The following diagram shows that how we can connect to internet using DSL technology:

ASDL (Asymmetric digital subscriber line)

Asymmetric digital subscriber line (ADSL) is a type of digital subscriber line (DSL)

technology, a data communications technology that enables faster data transmission over

copper telephone lines than a conventional voice band modem can provide.

Advantages Of ADSL

 Faster downloads compared to dial-up or ISDN

 No need for a second phone line – by allowing voice and data transfer at the same time

(you can use the phone as normal while connected to the internet).

 Because ADSL transfers data digitally it doesn‘t need to convert the data from digital to

analogue and back again.

 ADSL connections are Always on, which makes the usual long wait to connect a thing of

the past.

Disadvantages of ADSL

 ADSL connections are not available to everyone, you need to be within 3 miles of an

ADSL enabled exchange.

 The hardware costs can be quite significant as you will need a special ADSL modem

and ADSL filters to use the service, most ISPs allow you to hire these items which can

reduce the initial cost.

 Because ADSL connections are Always on you will need a firewall to protect your PC

Cable TV Internet Connection

Cable TV Internet connection is provided through Cable TV lines. It uses coaxial cable

which is capable of transferring data at much higher speed than common telephone line.

Key Points:

 A cable modem is used to access this service, provided by the cable operator.

 The Cable modem comprises of two connections: one for internet service and other for

Cable TV signals.

 Since Cable TV internet connections share a set amount of bandwidth with a group of

customers, therefore, data transfer rate also depends on number of customers using the

internet at the same time.

The following diagram shows that how internet is accessed using Cable TV connection:

Leased lines.

WANs are often built using leased lines. These leased lines involve a direct point-to-

point connection between two sites. Point-to-point WAN service may involve either analog dial-

up lines or dedicated leased digital private lines.

Analog lines

A modem is used to connect the computer to the telephone line. Analog lines may be

part of a public-switched telephone network and are suitable for batch data transmissions.

Dedicated lines

Digital phone lines that permit uninterrupted, secure transmission at fixed costs.At each

end of the leased line, a router connects to the LAN on one side and a hub within the WAN on

the other. Leased lines can get pretty expensive in the long run.

Satellite Internet Connection

Satellite Internet connection offers high speed connection to the internet. There are two

types of satellite internet connection: one way connection or two way connection.

In one way connection, we can only download data but if we want to upload, we need a

dialup access through ISP over telephone line.

In two way connection, we can download and upload the data by the satellite. It does not

require any dialup connection.

The following diagram shows how internet is accessed using satellite internet connection:

Wireless Internet Connection

Wireless Internet Connection makes use of radio frequency bands to connect to the

internet and offers a very high speed. The wireless internet connection can be obtained by

either WiFi or Bluetooth.

Key Points:

 Wi Fi wireless technology is based on IEEE 802.11 standards which allow the electronic

device to connect to the internet.

 Bluetooth wireless technology makes use of short-wavelength radio waves and helps to

create personal area network (PAN).

Modem

Modem or Broadband Modem is a hardware device that connects a

computer or router to a broadband network. For example, a Cable Modem and DSL Modem are

two examples of these types of Modems.

Short for MODulator/DEModulator, the first Modem known as the Dataphone was first

released by AT&T in 1960. It later became more common for home users when Dennis

Hayes and Dale Heatherington released the 80-103A Modem in 1977.

Cable Modem

A cable modem is a hardware device that allows your computer to communicate with

an Internet Service Provider over a landline connection.

It converts an analog signal to a digital signal for the purpose of granting access

to broadband Internet. A cable modem works by connecting a coaxial cable to a jack in the wall

and then a Cat5 (Ethernet) cord from the modem to a computer or a network router.

Network routers are used to share your Internet connection between multiple computers.

The picture is an example of a traditional stand alone cable modem from Motorola, there

are also all in one modems that have a modem and router built into one box.

If your modem only has one coaxial cable connection and one Cat5 connection, your

modem is a stand alone modem and needs a router to share the connection.

Cable offers a significant speed increase in Internet performance when compared to

a dial-upconnection and is one of the fastest broadband solutions. Comcast and Time Warner

are examples of cable Internet providers in the United States.

Internet tools

OpenOffice : Free and works almost identically to Microsoft Office Suite, OpenOffice

allows you to write documents, make spreadsheets, create presentations and more. You‘ll also

have the option to save files as Microsoft documents and other popular formats.

Google Search :Google is the gatekeeper to the World Wide Web and the keyholder to

all the answers to your questions. Type keywords and find the best answer possible. There‘s a

reason why it‘s ranked the number one website in the world, you know.

Google Drive : Google Drive is an easy way to drag-and-store all of your documents

onto a Google account. You can view documents anytime and anywhere with internet access. If

http://www.openoffice.org/
http://www.google.ca/
https://drive.google.com/

you‘re running an online business with multiple employees, use Google Drive to share

documents and pass information.

Word Press : A free-to-use blogging platform. Create your own domain and have a

website running in minutes. WordPress is arguably the go-to blogging website used by millions

of businesses online. It‘s free and available on Linux, PC, and MAC.

PowerPoint : Microsoft PowerPoint allows you to create amazing presentations. Here,

you can embed videos, insert slides, and create amazing content with style.

Facebook : The world‘s most popular social media website has over a billion users. It‘s

popular social network also carries great educational applications users may find helpful.

SlideShare : The world‘s most popular slide sharing tool used by the world‘s most
popular web publishers. Create slide presentations from anywhere and embed them wherever

and whenever you want for everyone to see.

Diigo : A social media site that gives users the luxury to save and annotate favorite content in

one spot; and of course, share discoveries with like minds.

EduGlogster: Create and use interactive posters with ease. Insert multiple photos, embed

videos, and view them in one interactive template.

Camtasia:Beam presentations to anyone in the world. Choose your mic, comment on images

and websites and send them over to your friends, students, or teachers.

VoiceThread :Similar to written threads in forums, VoiceThread creates voice driven group

discussions online. Post a lesson or project and recreate group discussions with ease.

Screenr :Instantly create screen casts with a push of a button. Click record and produce web-

based commentary screen casts. Post them up and send them to your classmates, friends, or

family.

iOS : If you have an iPhone or iPad, you‘ll want to find internet tools in application form. With

iOS you‘ll be able to absorb content on-the-go as you would on a desktop.

Poll Everywhere: Create polls anytime you want in real-time. Replace expensive hardware with

good old fashion web technology. Social media coordinators love this one.

Excel: Create Microsoft Excel spreadsheets on any whim. Input, store and manage

spreadsheet data like a boss with Mircrosoft excel.

paper.li: Publish all of the content you find online like a newspaper. Drag and drop your favorite

stories and publish it how the New York Times would: Easy.

MentorMob : Build a learning playlist and have the luxury to catch up on tutorials or lessons

anytime you want.

http://wordpress.org/
http://www.facebook.com/
http://www.slideshare.net/
http://www.diigo.com/
http://edu.glogster.com/
http://www.techsmith.com/camtasia.html
http://voicethread.com/
http://www.screenr.com/
http://www.apple.com/iphone/from-the-app-store/?cid=OAS-US-DOMAINS-appstore.com
http://www.polleverywhere.com/
http://office.microsoft.com/en-ca/excel/
http://paper.li/
http://www.mentormob.com/

quora: This is like having Wikipedia, Yahoo! Answers and Facebook all in one page. Here you‘ll
find an amazing community who offers great answers to all questions and vice versa.

Instapaper:Use Instapaper to save notes and content from various websites to read later. To

help you read lessons later, save it on Instapaper

Web server

Web server is a computer where the web content is stored. Basically web server is used

to host the web sites but there exists other web servers also such as gaming, storage, FTP,

email etc.

Web site is collection of web pages while web server is a software that respond to the

request for web resources.

Web Server Working

Web server respond to the client request in either of the following two ways:

 Sending the file to the client associated with the requested URL.

 Generating response by invoking a script and communicating with database

Key Points

 When client sends request for a web page, the web server search for the requested

page if requested page is found then it will send it to client with an HTTP response.

http://www.quora.com/
http://www.instapaper.com/

 If the requested web page is not found, web server will the send an HTTP
response:Error 404 Not found.

 If client has requested for some other resources then the web server will contact to the

application server and data store to construct the HTTP response.

Examples

Following table describes the most leading web servers available today:

S.N.O Web Server Description

1
Apache HTTP Server

This is the most popular web server in the world developed by the Apache
Software Foundation. .

2.
Internet Information Services (IIS)

The Internet Information Server (IIS) is a high performance Web Server from
Microsoft. .

Domain name

When DNS was not into existence, one had to download a Host file containing host

names and their corresponding IP address. But with increase in number of hosts of internet, the

size of host file also increased. This resulted in increased traffic on downloading this file. To

solve this problem the DNS system was introduced.

Domain Name System helps to resolve the host name to an address. It uses a hierarchical

naming scheme and distributed database of IP addresses and associated names

Domain Name System Architecture:

The Domain name system comprises of Domain Names, Domain Name Space, Name

Server that have been described below:

Domain Names

Domain Name is a symbolic string associated with an IP address. There are several

domain names available; some of them are generic such as com, edu, gov, net etc, while

some country level domain names such as au, in, za, us etc.

The following table shows the Generic Top-Level Domain names:

Domain Name Meaning

Com Commercial business

Edu Education

Gov U.S. government agency

Int International entity

Mil U.S. military

Net Networking organization

Org Non profit organization

The following table shows the Country top-level domain names:

Domain Name Meaning

au Australia

in India

cl Chile

fr France

us United States

za South Africa

uk United Kingdom

jp Japan

es Spain

de Germany

ca Canada

ee Estonia

hk Hong Kong

Domain Name Space

The domain name space refers a hierarchy in the internet naming structure. This

hierarchy has multiple levels (from 0 to 127), with a root at the top. The following diagram shows

the domain name space hierarchy:

In the above diagram each subtree represents a domain. Each domain can be

partitioned into sub domains and these can be further partitioned and so on.

Name Server

Name server contains the DNS database. This database comprises of various names

and their corresponding IP addresses. Since it is not possible for a single server to maintain

entire DNS database, therefore, the information is distributed among many DNS servers.

 Hierarchy of server is same as hierarchy of names.

 The entire name space is divided into the zones

Zones

Zone is collection of nodes (sub domains) under the main domain. The server maintains

a database called zone file for every zone.

If the domain is not further divided into sub domains then domain and zone refers to the

same thing.

The information about the nodes in the sub domain is stored in the servers at the lower

levels however; the original server keeps reference to these lower levels of servers.

 TYPES OF NAME SERVERS

Following are the three categories of Name Servers that manages the entire Domain

Name System:

1. Root Server
2. Primary Server
3. Secondary Server

1.1.1.1.1

 ROOT SERVER

Root Server is the top level server which consists of the entire DNS tree. It does not

contain the information about domains but delegates the authority to the other server

 PRIMARY SERVERS

Primary Server stores a file about its zone. It has authority to create, maintain, and

update the zone file.

 SECONDARY SERVER

Secondary Server transfers complete information about a zone from another server

which may be primary or secondary server. The secondary server does not have authority to

create or update a zone file.

DNS Working

DNS translates the domain name into IP address automatically. Following steps will take

you through the steps included in domain resolution process:

 When we type www.nptc.ac.in into the browser, it asks the local DNS Server for its IP

address.

 Here the local DNS is at ISP end.

 When the local DNS does not find the IP address of requested domain name, it forwards

the request to the root DNS server and again enquires about IP address of it.

 The root DNS server replies with delegation that I do not know the IP address of

www.nptc.ac.in but know the IP address of DNS Server.

 The local DNS server then asks the com DNS Server the same question.

 The in DNS Server replies the same that it does not know the IP address of

www.nptc.ac.in but knows the address of www.nptc.ac.in.

http://www.nptc.ac.in/
http://www.nptc.ac.in/
http://www.nptc.ac.in/
http://www.nptc.ac.in/

 Then the local DNS asks the www.nptc.ac.in DNS server the same question.

 Then www.nptc.ac.in DNS server replies with IP address of www.nptc.ac.in.

 Now, the local DNS sends the IP address of www.nptc.ac.in to the computer that sends

the request.

IP Address

IP address is a unique logical address assigned to a machine over the network. An IP

address exhibits the following properties:

 IP address is the unique address assigned to each host present on Internet.

 IP address is 32 bits (4 bytes) long.

 IP address consists of two components: network component and host component.

 Each of the 4 bytes is represented by a number from 0 to 255, separated with dots. For

example 137.170.4.124

IP address is 32-bit number while on the other hand domain names are easy to

remember names. For example, when we enter an email address we always enter a symbolic

string such as webmaster@tutorialspoint.com.

Uniform Resource Locator (URL)

Uniform Resource Locator (URL) refers to a web address which uniquely identifies a

document over the internet.

This document can be a web page, image, audio, video or anything else present on the web.

For example, www.nptc.ac.in/internet_technology/index.htmlis an URL to the index.html

which is stored on tutorialspoint web server under internet_technology directory.

URL Types

There are two forms of URL as listed below:

 Absolute URL

 Relative URL

 ABSOLUTE URL

Absolute URL is a complete address of a resource on the web. This completed address

comprises of protocol used, server name, path name and file name.

For example http:// www.nptc.ac.in / internet_technology /index.htm. where:

 http is the protocol.

http://www.nptc.ac.in/
http://www.nptc.ac.in/
http://www.nptc.ac.in/
http://www.nptc.ac.in/
mailto:webmaster@tutorialspoint.com
http://www.nptc.ac.in/internet_technology/index.htmlis
http://www.nptc.ac.in/

 tutorialspoint.com is the server name.

 index.htm is the file name.

The protocol part tells the web browser how to handle the file. Similarly we have some

other protocols also that can be used to create URL are:

 FTP

 https

 Gopher

 mailto

news

 RELATIVE URL

Relative URL is a partial address of a webpage. Unlike absolute URL, the protocol and

server part are omitted from relative URL.

Relative URLs are used for internal links i.e. to create links to file that are part of same

website as the WebPages on which you are placing the link.

For example, to link an image on Nptc.ac.in/internet_technology/internet_referemce_models,

we can use the relative URL which can take the form like /internet_technologies/internet-

osi_model.jpg.

Difference between Absolute and Relative URL

Absolute URL Relative URL

Used to link web pages on different
websites

Used to link web pages within the same website.

Difficult to manage. Easy to Manage

Changes when the server name or
directory name changes

Remains same even of we change the server
name or directory name.

Take time to access Comparatively faster to access.

Search Engine

Search Engine refers to a huge database of internet resources such as web pages,

newsgroups, programs, images etc. It helps to locate information on World Wide Web.

User can search for any information by passing query in form of keywords or phrase. It

then searches for relevant information in its database and return to the user.

Search Engine Components

Generally there are three basic components of a search engine as listed below:

 Web Crawler

 Database

 Search Interfaces

Web crawler

It is also known as spider or bots. It is a software component that traverses the web to

gather information.

Database

All the information on the web is stored in database. It consists of huge web resources.

Search Interfaces

This component is an interface between user and the database. It helps the user to

search through the database.

Search Engine Working

Web crawler, database and the search interface are the major component of a search

engine that actually makes search engine to work. Search engines make use of Boolean

expression AND, OR, NOT to restrict and widen the results of a search. Following are the steps

that are performed by the search engine:

 The search engine looks for the keyword in the index for predefined database instead of

going directly to the web to search for the keyword.

 It then uses software to search for the information in the database. This software

component is known as web crawler.

 Once web crawler finds the pages, the search engine then shows the relevant web

pages as a result. These retrieved web pages generally include title of page, size of text

portion, first several sentences etc.

These search criteria may vary from one search engine to the other. The retrieved

information is ranked according to various factors such as frequency of keywords, relevancy of

information, links etc.

 User can click on any of the search results to open it.

Architecture:

The search engine architecture comprises of the three basic layers listed below:

 Content collection and refinement.

 Search core

 User and application interfaces

Search Engine Processing

Indexing Process

Indexing process comprises of the following three tasks:

 Text acquisition

 Text transformation

Index creation

 TEXT ACQUISITION

It identifies and stores documents for indexing.

 TEXT TRANSFORMATION

It transforms document into index terms or features.

 INDEX CREATION

It takes index terms created by text transformations and create data structures to

support fast searching.

Query Process

Query process comprises of the following three tasks:

 User interaction

 Ranking

Evaluation

 USER INTERACTION

It supports creation and refinement of user query and displays the results.

 RANKING

It uses query and indexes to create ranked list of documents.

 EVALUATION

It monitors and measures the effectiveness and efficiency. It is done offline.

Examples

Following are the several search engines available today:

Search
Engine

Description

Google
It was originally called BackRub. It is the most popular search engine
globally.

Bing
It was launched in 2009 by Microsoft. It is the latest web-based search
engine that also delivers Yahoo‘s results.

Ask
It was launched in 1996 and was originally known as Ask Jeeves. It
includes support for match, dictionary, and conversation question.

AltaVista
It was launched by Digital Equipment Corporation in 1995. Since 2003, it
is powered by Yahoo technology.

AOL.Search It is powered by Google.

LYCOS
It is top 5 internet portal and 13th largest online property according to Media
Matrix.

Alexa It is subsidiary of Amazon and used for providing website traffic information.

Web Browser

Web Browser is an application software that allows us to view and explore information

on the web. User can request for any web page by just entering a URL into address bar.Web

browser can show text, audio, video, animation and more. It is the responsibility of a web

browser to interpret text and commands contained in the web page.

Earlier the web browsers were text-based while now a days graphical-based or voice-

based web browsers are also available. Following are the most common web browser

available today:

Browser Vendor

Internet Explorer Microsoft

Google Chrome Google

Mozilla Firefox Mozilla

Netscape Navigator Netscape Communications Corp.

Opera Opera Software

Safari Apple

Sea Monkey Mozilla Foundation

K-meleon K-meleon

Architecture

There are a lot of web browsers available in the market. All of them interpret and display

information on the screen however their capabilities and structure varies depending upon

implementation. But the most basic component that all web browser must exhibit are listed

below:

 Controller/Dispatcher

 Interpreter

 Client Programs

Controller works as a control unit in CPU. It takes input from the keyboard or mouse, interpret it

and make other services to work on the basis of input it receives.

Interpreter receives the information from the controller and execute the instruction line by line.

Some interpreter are mandatory while some are optional For example, HTML interpreter

program is mandatory and java interpreter is optional.

Client Program describes the specific protocol that will be used to access a particular service.

Following are the client programs tat are commonly used:

 HTTP

 SMTP

 FTP

 NNTP

POP

Starting Internet Explorer

Internet explorer is a web browser developed by Microsoft. It is installed by default with

the windows operating system however, it can be downloaded and be upgraded.

To start internet explorer, follow the following steps:

Go to Start button and click Internet Explorer.

The Internet Explorer window will appear as shown in the following diagram:

Accessing Web Page

Accessing web page is very simple. Just enter the URL in the address bar as shown the

following diagram:

IP Addresses

Internet Protocol hierarchy contains several classes of IP Addresses to be used

efficiently in various situations as per the requirement of hosts per network. Broadly, the IPv4

Addressing system is divided into five classes of IP Addresses. All the five classes are identified

by the first octet of IP Address.

Internet Corporation for Assigned Names and Numbers is responsible for assigning IP

addresses.

The first octet referred here is the left most of all. The octets numbered as follows

depicting dotted decimal notation of IP Address:

The number of networks and the number of hosts per class can be derived by this formula:

When calculating hosts' IP addresses, 2 IP addresses are decreased because they

cannot be assigned to hosts, i.e. the first IP of a network is network number and the last IP is

reserved for Broadcast IP.

The 5 IP classes are split up based on the value in the 1st octet:

Class A Address

The first bit of the first octet is always set to 0 (zero). Thus the first octet ranges from 1 –
127, i.e.

Class A addresses only include IP starting from 1.x.x.x to 126.x.x.x only. The IP range

127.x.x.x is reserved for loopback IP addresses.

The default subnet mask for Class A IP address is 255.0.0.0 which implies that Class A

addressing can have 126 networks (27-2) and 16777214 hosts (224-2).

Class A IP address format is thus: 0NNNNNNN.HHHHHHHH.HHHHHHHH.HHHHHHHH

Class B Address

An IP address which belongs to class B has the first two bits in the first octet set to 10,

i.e.

Class B IP Addresses range from 128.0.x.x to 191.255.x.x. The default subnet mask for

Class B is 255.255.x.x.

Class B has 16384 (214) Network addresses and 65534 (216-2) Host addresses.

Class B IP address format is: 10NNNNNN.NNNNNNNN.HHHHHHHH.HHHHHHHH

Class C Address

The first octet of Class C IP address has its first 3 bits set to 110, that is:

Class C IP addresses range from 192.0.0.x to 223.255.255.x. The default subnet mask

for Class C is 255.255.255.x.

Class C gives 2097152 (221) Network addresses and 254 (28-2) Host addresses.

Class C IP address format is: 110NNNNN.NNNNNNNN.NNNNNNNN.HHHHHHHH

Class D Address

Very first four bits of the first octet in Class D IP addresses are set to 1110, giving a

range of:

Class D has IP address rage from 224.0.0.0 to 239.255.255.255. Class D is reserved for

Multicasting. In multicasting data is not destined for a particular host, that is why there is no

need to extract host address from the IP address, and Class D does not have any subnet mask.

Class E Address

This IP Class is reserved for experimental purposes only for R&D or Study. IP addresses

in this class ranges from 240.0.0.0 to 255.255.255.254. Like Class D, this class too is not

equipped with any subnet mask.

Internet Protocol version 4

The Internet Protocol version 4 was designed to be allocated to approx. imately 4.3

billion addresses. At the beginning of Internet this was considered a much wider address space

for which there was nothing to worry about.

The sudden growth in internet users and its wide spread use has exponentially

increased the number of devices which needs real and unique IP to be able to communicate.

Gradually, an IPS is required by almost every digital equipment which were made to ease

human life, such as Mobile Phones, Cars and other electronic devices. The number of devices

(other than computers/routers) expanded the demand for extra IP addresses, which were not

considered earlier.

Allocation of IPv4 is globally managed by Internet Assigned Numbers Authority (IANA)

under coordination with the Internet Corporation for Assigned Names and Numbers (ICANN).

IANA works closely with Regional Internet Registries, which in turns are responsible for

efficiently distributing IP addresses in their territories. There are five such RIRS. According to

IANA reports, all the IPv4 address blocks have been allocated. To cope up with the situation,

the following practices were being done:

 Private IPs: Few blocks of IPs were declared for private use within a LAN so that the

requirement for public IP addresses can be reduced.

 NAT: Network address translation is a mechanism by which multiple PCs/hosts with

private IP addresses are enabled to access using one or few public IP addresses.

 Unused Public IPs were reclaimed by RIRs.

Internet Protocol v6 (IPv6)

IETF (Internet Engineering Task Force) has redesigned IP addresses to mitigate the

drawbacks of IPv4. The new IP address is version 6 which is 128-bit address, by which every

single inch of the earth can be given millions of IP addresses.

Today majority of devices running on Internet are using IPv4 and it is not possible to shift

them to IPv6 in the coming days. There are mechanisms provided by IPv6, by which IPv4 and

IPv6 can co-exist unless the Internet entirely shifts to IPv6:

 Dual IP Stack

 Tunneling (6to4 and 4to6)

 NAT Protocol Translation

Internet Protocols

TCP / IP

TCP / IP is a suite, or family, of protocols that govern the way data is transmitted across

networks. TCP / IP protocols work together to break the data into small pieces that can be

efficiently handled by the network, communicate the destination of the data to the network,

verify the receipt of the data on the other end of the transmission, and reconstruct the data in its

original form.

TCP/IP (Transmission Control Protocol/Internet Protocol) is the basic communication

language or protocol of the Internet. It can also be used as a communications protocol in a

private network (either an intranet or an extranet). When you are set up with direct access to the

Internet, your computer is provided with a copy of the TCP/IP program just as every other

computer that you may send messages to or get information from also has a copy of TCP/IP.

TCP/IP is a two-layer program. The higher layer, Transmission Control Protocol,

manages the assembling of a message or file into smaller packets that are transmitted over the

Internet and received by a TCP layer that reassembles the packets into the original message.

The lower layer, Internet Protocol, handles the address part of each packet so that it gets to the

right destination. Each gateway computer on the network checks this address to see where to

forward the message. Even though some packets from the same message are routed differently

than others, they'll be reassembled at the destination.

TCP/IP uses the client/server model of communication in which a computer user (a

client) requests and is provided a service (such as sending a Web page) by another computer

(a server) in the network. TCP/IP communication is primarily point-to-point, meaning each

communication is from one point (or host computer) in the network to another point or host

computer. TCP/IP and the higher-level applications that use it are collectively said to be

"stateless" because each client request is considered a new request unrelated to any previous

one (unlike ordinary phone conversations that require a dedicated connection for the call

duration). Being stateless frees network paths so that everyone can use them continuously.

(Note that the TCP layer itself is not stateless as far as any one message is concerned. Its

connection remains in place until all packets in a message have been received.)

Many Internet users are familiar with the even higher layer application protocols that use

TCP/IP to get to the Internet. These include the World Wide Web's Hypertext Transfer Protocol

(HTTP), the File Transfer Protocol (FTP), Telnet (Telnet) which lets you logon to remote

computers, and the Simple Mail Transfer Protocol (SMTP). These and other protocols are often

packaged together with TCP/IP as a "suite."

Personal computer users with an analog phone modem connection to the Internet

usually get to the Internet through the Serial Line Internet Protocol (SLIP) or the Point-to-Point

Protocol (PPP). These protocols encapsulate the IP packets so that they can be sent over the

dial-up phone connection to an access provider's modem.

Protocols related to TCP/IP include the User Datagram Protocol (UDP), which is used

instead of TCP for special purposes. Other protocols are used by network host computers for

exchanging router information. These include the Internet Control Message Protocol (ICMP), the

Interior Gateway Protocol (IGP), the Exterior Gateway Protocol (EGP), and the Border Gateway

Protocol (BGP).

FTP

FTP (File Transfer Protocol) is the protocol, or set of rules, which enables files to be

transferred from one computer to another. It is part of the TCP / IP protocol suite. Files that are

available for FTP are stored on computers called FTP servers. An FTP client program is an

interface that allows the user to locate the file(s) to be transferred and initiate the transfer

process. It is a good idea to have current virus checking software and compression /

decompression software before downloading files. Through anonymous FTP, users have

access to many types of files including shareware, freeware, upgrades and documents.

File Transfer Protocol (FTP) is a client-server standard used to transfer files between

computers over the Internet using control and data channels.

File Transfer Protocol (FTP)

File Transfer Protocol (FTP) is a standard Internet protocol for transmitting files between

computers on the Internet over TCP/IP connections.

FTP is a client-server protocol that relies on two communications channels between

client and server: a command channel for controlling the conversation and a data channel for

transmitting file content. Clients initiate conversations with servers by requesting to download a

file. Using FTP, a client can upload, download, delete, rename, move and copy files on a server.

A user typically needs to log on to the FTP server, although some servers make some or all of

their content available without login, also known as anonymous FTP.

FTP sessions work in passive or active modes. In active mode, after a client initiates a

session via a command channel request, the server initiates a data connection back to the client

and begins transferring data. In passive mode, the server instead uses the command channel to

send the client the information it needs to open a data channel. Because passive mode has the

client initiating all connections, it works well across firewalls and Network Address Translation

(NAT) gateways.

http://searchnetworking.techtarget.com/definition/protocol
http://searchnetworking.techtarget.com/definition/TCP-IP
http://searchnetworking.techtarget.com/definition/client-server
http://searchsecurity.techtarget.com/definition/logon
http://searchsoa.techtarget.com/definition/anonymous-FTP
http://searchenterprisewan.techtarget.com/definition/Network-Address-Translation

Active FTP and passive FTP compared

FTP was originally defined in 1971, prior to the definition of TCP and IP, and has been

redefined many times -- e.g., to use TCP/IP (RFC 765 and RFC 959), and then Internet Procotol

Version 6 (IPv6), (RFC 2428). Also, because it was defined without much concern for security, it

has been extended many times to improve security: for example, versions that encrypt via a

TLS connection (FTPS) or that work with Secure File Transfer Protocol (SFTP), also known as

SSH File Transfer Protocol.

Users can work with FTP via a simple command line interface (for example, from a

console or terminal window in Microsoft Windows, Apple OS X or Linux) or with a dedicated

graphical user interface (GUI). Web browsers can also serve as FTP clients.

Although a lot of file transfer is now handled using HTTP, FTP is still commonly used to

transfer files "behind the scenes" for other applications -- e.g., hidden behind the user interfaces

of banking, a service that helps build a website, such as Wix or SquareSpace, or other services.

It is also used, via Web browsers, to download new applications.

HTTP

HTTP is an acronym for Hypertext Transfer Protocol. HTTP is the set of rules, or

protocol, that enables hypertext data to be transferred form one computer to another, and is

based on the client / server principle. Hypertext is text that is coded using the Hypertext is text

that is coded using the Hypertext Markup Language (HTML). HTTP enables users to retrieve a

wide variety of resources such as text, graphics, sound, animation and other hypertext

documents, and allows hypertext access to other Internet protocols.

HTTP (Hypertext Transfer Protocol) is the set of rules for transferring files (text, graphic

images, sound, video, and other multimedia files) on the World Wide Web. As soon as a Web

user opens their Web browser, the user is indirectly making use of HTTP. HTTP is an

application protocol that runs on top of the TCP/IP suite of protocols (the foundation protocols

for the Internet).

HTTP concepts include (as the Hypertext part of the name implies) the idea that files can

contain references to other files whose selection will elicit additional transfer requests. Any Web

server machine contains, in addition to the Web page files it can serve, an HTTP daemon, a

program that is designed to wait for HTTP requests and handle them when they arrive. Your

Web browser is an HTTP client, sending requests to server machines. When the browser user

enters file requests by either "opening" a Web file (typing in a Uniform Resource Locator or

URL) or clicking on a hypertext link, the browser builds an HTTP request and sends it to the

Internet Protocol address (IP address) indicated by the URL. The HTTP daemon in the

destination server machine receives the request and sends back the requested file or files

associated with the request. (A Web page often consists of more than one file.)

The latest version of HTTP is HTTP 1.1.

https://tools.ietf.org/html/rfc765
https://www.ietf.org/rfc/rfc959.txt
http://searchenterprisewan.techtarget.com/definition/IPv6
https://tools.ietf.org/html/rfc2428
http://searchcompliance.techtarget.com/definition/SFTP-Secure-File-Transfer-Protocol
http://searchwindowsserver.techtarget.com/definition/command-line-interface-CLI
http://searchwindevelopment.techtarget.com/definition/GUI
http://searchwindevelopment.techtarget.com/definition/HTTP

TelNet:

Telnet is the protocol which enables one computer to establish a connection to another

computer. The computer establishing the connection is referred to as the local computer; the

computer accepting the connection is referred to as the remote, or host, computer. Although

some computer may require an account and password, many computers allow users to access

resources stored on them without an account and a password. Telnet can provide access to

many resources around the world, such as library catalogs, databases, and other Internet tools

and applications.

What is Telnet?

Telnet is a user command and an underlying TCP/IP protocol for accessing remote

computers. Through Telnet, an administrator or another user can access someone else's

computer remotely. On the Web, HTTP and FTP protocols allow you to request specific files

from remote computers, but not to actually be logged on as a user of that computer. With

Telnet, you log on as a regular user with whatever privileges you may have been granted to the

specific application and data on that computer.

A Telnet command request looks like this (the computer name is made-up):

telnet the.libraryat.whatis.edu

The result of this request would be an invitation to log on with a userid and a prompt for
a password. If accepted, you would be logged on like any user who used this computer every
day.

Telnet is most likely to be used by program developers and anyone who has a need to

use specific applications or data located at a particular host computer.

Gopher

Gopher is a protocol designed to search, retrieve, and display documents from remote

sites on the Internet. In addition to document display, document retrieval, it is possible to initiate

on-line connections with other systems via Gopher. Information accessible via Gopher is stored

on many computers all over the Internet called Gopher servers. Gopher works on the client /

server model and to retrieve and search the information stored on the gopher servers, you need

to run a Gopher client application on your computer. Gopher can work with many other Internet

protocols.

WAIS

WAIS is an Internet search tool that has the capability of searching many databases at

one time. The databases to be searched can be determined by the user. When WAIS completes

a search, it is actually searching an index of the database. A WAIS database index is created by

a person. WAIS retrieves all items from the chosen databases that contain any of the words in

http://searchcio-midmarket.techtarget.com/definition/host

the search phrase, provided that the words in the search phrase appear in the indexes of the

selected databases. A relevancy ranking is assigned to each retrieved item to help the user

determine which items may be most useful. WAIS can be accessed via Telnet, Gopher or a

WAIS client program, and increasingly WAIS indexed databases are accessible through the

World Wide Web. Web users can use WAIS by either downloading a WAIS client and a

"gateway" to the Web browser or by using Telnet to connect to a public WAIS client.

WAIS (Wide Area Information Servers) is an Internet system in which specialized

subject databases are created at multiple server locations, kept track of by a directory of servers

at one location, and made accessible for searching by users with WAIS client programs. The

user of WAIS is provided with or obtains a list of distributed database s. The user enters a

search argument for a selected database and the client then accesses all the servers on which

the database is distributed. The results provide a description of each text that meets the search

requirements. The user can then retrieve the full text.

Because of the abundance of content and search engines now available on the Web,

few if any WAIS servers remain in operation.

GPRS

General Packet Radio Service (GPRS) is a packet-based mobile data service on the

global system for mobile communications (GSM) of 3G and 2G cellular communication systems.

A packet-switched technology that enables data communications.

 GPRS is used for various data applications on phones, including wireless Internet

(WAP), MMS, and software that connects to the Internet. Basically, any network

connection that is not voice or text messaging uses a data connection like GPRS.

 GPRS offers a tenfold increase in data speed over previous (circuit-switched)

technologies, up to 115kbit/s (in theory). Typical real-world speeds are around 30-40

Kbps.

General Packet Radio Services (GPRS) is a packet-based wireless communication

service that promises data rates from 56 up to 114 Kbps and continuous connection to the

Internet for mobile phone and computer users. The higher data rates allow users to take part in

video conferences and interact with multimedia Web sites and similar applications using mobile

handheld devices as well as notebook computers. GPRS is based on Global System for Mobile

(GSM) communication and complements existing services such circuit-switched cellular phone

connections and the Short Message Service (SMS).

In theory, GPRS packet-based services cost users less than circuit-switched services

since communication channels are being used on a shared-use, as-packets-are-needed basis

rather than dedicated to only one user at a time. It is also easier to make applications available

to mobile users because the faster data rate means that middleware currently needed to adapt

applications to the slower speed of wireless systems are no longer be needed. As GPRS has

become more widely available, along with other 2.5G and 3G services, mobile users of virtual

http://searchnetworking.techtarget.com/definition/packet
http://searchmobilecomputing.techtarget.com/definition/wireless
http://searchnetworking.techtarget.com/definition/Kbps
http://searchmobilecomputing.techtarget.com/definition/cellular-telephone
http://searchmobilecomputing.techtarget.com/definition/handheld
http://searchmobilecomputing.techtarget.com/definition/GSM
http://searchnetworking.techtarget.com/definition/circuit-switched
http://searchmobilecomputing.techtarget.com/definition/Short-Message-Service

private networks (VPNs) have been able to access the private network continuously over

wireless rather than through a rooted dial-up connection.

GPRS also complements Bluetooth, a standard for replacing wired connections between

devices with wireless radio connections. In addition to the Internet Protocol (IP), GPRS supports

X.25, a packet-based protocol that is used mainly in Europe. GPRS is an evolutionary step

toward Enhanced Data GSM Environment (EDGE) and Universal Mobile Telephone Service

(UMTS).

Newer technologies like EDGE and 3G are much faster.

Using a packet switching, subscribers are always connected and always on-line, so

services will be easy and quick to access. GPRS is considered a "2.5G" technology, meaning it

is more advanced than standard 2G digital technology, but does not meet the requirements of a

full-fledged 3G technology.

EDGE (Enhanced Data for Global Evolution):

 An upgrade for GSM/GPRS networks that triples data rates (speed) over standard

GPRS.

 EDGE is used automatically when both the phone and network support it. EDGE phones

will automatically revert to the slower GPRS standard when EDGE service is not

available.

 Although many EDGE phones and devices are theoretically capable of up to 236 Kbps,

most EDGE networks are only configured to allow up to 135 Kbps, to conserve spectrum

resources. Real-world data rates are usually lower than the maximum.

 Because it is based on existing GSM and GPRS technology, EDGE is a smooth upgrade

for GSM network operators.

 Although EDGE works at a low level within the GSM standard that includes voice, the

main benefit is to increase GPRS data rates. GPRS operating over EDGE is called

EGPRS.

 Although EDGE is faster than GPRS, it is not as fast as 3G technologies such as

HSDPA and EVDO.

2G, 2.5G, 2.75G, 3G, 4G

Short-form for generations of wireless technologies:

 2G stands for second generation primarily meaning GSM only;

 2.5G primarily means GSM and GPRS;

 2.75G was used to refer to EDGE (Enhanced Data Rates for GSM Evolution) Networks;

 3G means third generation (W-CDMA) technology;

 4G includes the Mobile WiMAX, and the first-release Long-Term Evolution (LTE)
standards.

What 5G will consist of is not yet clearly established, and it is unlikley to be deployed before

the 2020s. The EU is sponsoring projects to better define and develop 5G including METIS,

5GNOW, iJOIN, TROPIC, Mobile Cloud Networking, COMBO, MOTO and PHYLAWS.

2.75G is a term occasionally used to refer to EDGE data connectivity, implying that is is

faster than GPRS (sometimes called 2.5G), but slower than typical 3G networks. The truth of
the matter, however, is that EDGE is an official ITU ratified 3G technology.

G in 2G, 3G and 4G stands for the ―Generation‖ of the mobile network. Today, mobile

operators have started offering 4G services in the country. A higher number before the 'G'
means more power to send out and receive more information and therefore the ability to
achieve a higher efficiency through the wireless network.

What are 1G, 2G, 3G and 4G networks ? ... The "G" in wireless networks refers to the

"generation" of the underlying wireless network technology. Technically generations are defined

as follows: 1G networks (NMT, C-Nets, AMPS, TACS) are considered to be the first analog

cellular systems, which started early 1980s.

The term "3G internet" refers to the third generation of mobile phone standards as set by

the International Telecommunications Union (ITU). 3G technologies allow mobile operators to

offer more service options to their users, including mobile broadband.

Download speeds compare on 2G, 3G and 4G

Generation Technology Maximum Download Speed

2G HSPA 7.2 Mbit/s

3G HSPA+ 21Mbit/s

DC-HSPA+ 42Mbit/s

4G LTE 100Mbit/s

Meaning of 3g spectrum

For example, in the case of a voice signal having a minimum frequency of 200 hertz

(Hz) and a maximum frequency of 3,000 Hz, the bandwidth is 2,800 Hz (3 KHz). The amount of

bandwidth needed for 3G services could be as much as 15-20 Mhz, whereas for 2G services a

bandwidth of 30-200 KHz is used.Sep 29, 2006

1G (or 1-G) refers to the first generation of wireless telephone technology (mobile

telecommunications). ... The main difference between the two mobile telephone systems (1G

http://europa.eu/rapid/press-release_IP-13-159_en.htm
https://www.metis2020.com/about-metis/

and 2G), is that the radio signals used by 1G networks are analog, while 2G networks are

digital.

Difference between 2G,3G and 4G

G in 2G, 3G and 4G stands for the ―Generation‖ of the mobile network. Today, mobile

operators have started offering 4G services in the country. A higher number before the 'G'

means more power to send out and receive more information and therefore the ability to

achieve a higher efficiency through the wireless network.

1.2 Introduction to HTML

HTML stands for Hypertext Markup Language, and it is the most widely used language

to write Web Pages.

 Hypertext refers to the way in which Web pages (HTML documents) are linked together.

Thus the link available on a webpage are called Hypertext.

 As its name suggests, HTML is a Markup Language which means you use HTML to

simply "mark up" a text document with tags that tell a Web browser how to structure it to

display.

Originally, HTML was developed with the intent of defining the structure of documents

like headings, paragraphs, lists, and so forth to facilitate the sharing of scientific information

between researchers.

Now, HTML is being widely used to format web pages with the help of different tags
available in HTML language.

Basic HTML Document

In its simplest form, following is an example of an HTML document:

<!DOCTYPE html>

<html>

<head>

<title>This is document title</title>

</head>

<body>

<h1>This is a heading</h1>

<p>Document content goes here </p>

</body> </html>

Either you can use Try it option available at the top right corner of the code box to check

the result of this HTML code, or let's save it in an HTML file test.htm using your favorite text

editor. Finally open it using a web browser like Internet Explorer or Google Chrome, or Firefox

etc. It must show the following output:

HTML Tags

As told earlier, HTML is a markup language and makes use of various tags to format the

content. These tags are enclosed within angle braces <Tag Name>. Except few tags, most of

the tags have their corresponding closing tags. For example <html>has its closing

tag </html> and <body> tag has its closing tag </body> tag etc.

Above example of HTML document uses following tags:

Tag Description

<!DOCTYPE...> This tag defines the document type and HTML version.

<html> This tag encloses the complete HTML document and mainly comprises of
document header which is represented by <head>...</head> and
document body which is represented by <body>...</body> tags.

<head> This tag represents the document's header which can keep other HTML
tags like <title>, <link> etc.

<title> The <title> tag is used inside the <head> tag to mention the document title.

<body> This tag represents the document's body which keeps other HTML tags
like <h1>, <div>, <p> etc.

<h1> This tag represents the heading.

<p> This tag represents a paragraph.

To learn HTML, you will need to study various tags and understand how do they behave

while formatting a textual document. Learning HTML is simple as users have to learn the usage

of different tags in order to format the text or images to make a beautiful webpage.

World Wide Web Consortium (W3C) recommends to use lowercase tags starting from

HTML 4.

HTML Document Structure

A typical HTML document will have following structure:
Document declaration tag

<html>

<head>

Document header related tags

</head>

<body>

Document body related tags

</body>

</html>

We will see what is document declaration tag.

The <!DOCTYPE> Declaration

The <!DOCTYPE> declaration tag is used by the web browser to understand the version

of the HTML used in the document. Current version of HTML is 5 and it makes use of the

following declaration:

<!DOCTYPE html>

There are many other declaration types which can be used in HTML document

depending on what version of HTML is being used. We will see more details on this while

discussing <!DOCTYPE...> tag along with other HTML tags.

Headers

Heading Tags

Any document starts with a heading. You can use different sizes for your headings.

HTML also has six levels of headings, which use the elements <h1>, <h2>, <h3>, <h4>, <h5>,

and <h6>. While displaying any heading, browser adds one line before and one line after that

heading.

Example:

<!DOCTYPE html>

<html>

<head>

<title>Heading Example</title>

</head>

<body>

<h1>This is heading 1</h1>

<h2>This is heading 2</h2>

<h3>This is heading 3</h3>

<h4>This is heading 4</h4>

<h5>This is heading 5</h5>

<h6>This is heading 6</h6>

</body>

</html>

This will produce following result:

Formatting Tags:

Bold Text

Anything that appears within ... element, is displayed in bold as shown below:

Example:

<!DOCTYPE html>

<html>

<head>

<title>Bold Text Example</title>

</head>

<body>

<p>The following word uses a bold typeface.</p>

</body>

</html>

This will produce following result:

The following word uses a bold typeface.

Italic Text:

Anything that appears within <i>...</i> element is displayed in italicized.

Example:

<!DOCTYPE html>

<html>

<head>

<title>Italic Text Example</title>

</head>

<body>

<p>The following word uses a <i>italicized</i> typeface.</p>

</body>

</html>

This will produce following result:

The following word uses a italicized typeface.

Underlined Text:

Anything that appears within <u>...</u> element, is displayed with underline as shown below:

Example

<!DOCTYPE html>

<html>

<head>

<title>Underlined Text Example</title>

</head>

<body>

<p>The following word uses a <u>underlined</u> typeface.</p>

</body>

</html>

This will produce following result:

The following word uses a underlined typeface.

HTML Paragraphs

The HTML <p> element defines a paragraph:

Example

<!DOCTYPE html>

<html>

<body>

<p>This is a paragraph.</p>

<p>This is a paragraph.</p>

<p>This is a paragraph.</p>

</body>

</html>

This will produce following result:

This is a paragraph.

This is a paragraph.

This is a paragraph.

TT Tag:

The <tt> tag is not supported in HTML5.

If <tt> was used for marking up keyboard input, consider the <kbd> element; for

variables, consider the <var> element; for computer code, consider the <code> element; and for

computer output, consider the <samp> element, or use CSS instead.

The <tt> tag defines teletype text.

<!DOCTYPE html>

<html>

<body>

<p>This text is normal.</p>

<p><tt>Thistext is teletype text.</tt></p>

</body>

</html>

Output ;

This text is normal.

This text is teletype text.

Strike Text

Anything that appears within <strike>...</strike> element is displayed with

strikethrough, which is a thin line through the text as shown below:

Example

<!DOCTYPE html>

<html>

<head>

<title>Strike Text Example</title>

</head>

<body>

<p>The following word uses a <strike>strikethrough</strike> typeface.</p>

</body>

</html>

This will produce following result:

The following word uses a strikethrough typeface.

Monospaced Font:

The content of a <tt>...</tt> element is written in monospaced font. Most of the fonts are

known as variable-width fonts because different letters are of different widths (for example, the

letter 'm' is wider than the letter 'i'). In a monospaced font, however, each letter has the same

width.

Example

<!DOCTYPE html>

<html>

<head>

<title>Monospaced Font Example</title>

</head>

<body>

<p>The following word uses a <tt>monospaced</tt> typeface.</p>

</body>

</html>

This will produce following result:

The following word uses a monospaced typeface.

BR TAG:

The
 tag inserts a single line break.

The
 tag is an empty tag which means that it has no end tag.

<!DOCTYPE html>

<html>

<body>

<p>To break lines
in a text,
use the br element.</p>

</body></html>

This will produce following result:

To break lines
in a text,
use the br element.

EM Tag

The tag is a phrase tag. It renders as emphasized text.

Tip: This tag is not deprecated, but it is possible to achieve richer effect with CSS.

<html>

<head>

<style>

em {

font-style: italic;

}</style>

</head>

<body>

<p>An em element is displayed like this:</p>

Some emphasized text

<p>Change the default CSS settings to see the effect.</p>

</body>

</html>

This will produce following result:

An em element is displayed like this:

Some emphasized text

Change the default CSS settings to see the effect.

Example

<!DOCTYPE html>

<html>

<body>

Emphasized text

Strong text

<code>A piece of computer code</code>

<samp>Sample output from a computer program</samp>

<kbd>Keyboard input</kbd>

<var>Variable</var>

</body> </html>

This will produce following result:

Emphasized text
Strong text

A piece of computer code
Sample output from a computer program
Keyboard input
Variable

Grouping Content

The <div> and elements allow you to group together several elements to create

sections or subsections of a page.

For example, you might want to put all of the footnotes on a page within a <div> element

to indicate that all of the elements within that <div> element relate to the footnotes. You might

then attach a style to this <div> element so that they appear using a special set of style rules.

Example

<!DOCTYPE html>

<html>

<head>

<title>Div Tag Example</title>

</head>

<body>

<divid="menu"align="middle">

<ahref="/index.htm">HOME |

<ahref="/about/contact_us.htm">CONTACT |

<ahref="/about/index.htm">ABOUT

</div>

<divid="content"align="left"bgcolor="white">

<h5>Content Articles</h5>

<p>Actual content goes here </p>

</div>

</body>

</html>

This will produce following result:

HOME | CONTACT | ABOUT
1.1.1.12.1 CONTENT ARTICLES

Actual content goes here.....

The element, on the other hand, can be used to group inline elements only. So,

if you have a part of a sentence or paragraph which you want to group together, you could use

the element as follows

Example

<!DOCTYPE html>

<html>

https://www.tutorialspoint.com/index.htm
https://www.tutorialspoint.com/about/contact_us.htm
https://www.tutorialspoint.com/about/index.htm

<head>

<title>Span Tag Example</title>

</head>

<body>

<p>This is the example of <spanstyle="color:yellow">span tag and the
<spanstyle="color:red">div tagalongwith CSS</p>

</body>

</html>

This will produce following result:

This is the example of span tag and the div tag along with CSS

These tags are commonly used with CSS to allow you to attach a style to a section of a page.

HR TAG

The <hr> tag defines a thematic break in an HTML page (e.g. a shift of topic).

The <hr> element is used to separate content (or define a change) in an HTML page.

<!DOCTYPE html>

<html>

<body>

<h1>HTML</h1>

<p>HTML is a language for describing web pages.</p>

<hr>

<h1>CSS</h1>

<p>CSS defines how to display HTML elements.</p>

</body>

</html>

This will produce following result:

HTML

HTML is a language for describing web pages.

CSS

CSS defines how to display HTML elements.

PRE TAG

The <pre> tag defines preformatted text.

Text in a <pre> element is displayed in a fixed-width font (usually Courier), and it preserves both
spaces and line breaks.

<!DOCTYPE html>

<html>

<body>

<pre>

Text in a pre element

is displayed in a fixed-width

font, and it preserves

bothspaces and

line breaks

</pre>

</body>

</html>

This will produce following result:

Text in a pre element is displayed in a fixed-width font, and it preserves both spaces

and line breaks

Fonts Tag

Fonts play very important role in making a website more user friendly and increasing

content readability. Font face and color depends entirely on the computer and browser that is

being used to view your page but you can use HTML tag to add style, size, and color to

the text on your website. You can use a <basefont> tag to set all of your text to the same size,

face, and color.

The font tag is having three attributes called size, color, and face to customize your

fonts. To change any of the font attributes at any time within your webpage, simply use the

 tag. The text that follows will remain changed until you close with the tag. You

can change one or all of the font attributes within one tag.

Note: The font and base font tags are deprecated and it is supposed to be removed in a

future version of HTML. So they should not be used rather, it's suggested to use CSS styles to

manipulate your fonts. But still for learning purpose, this chapter will explain font and base font

tags in detail.

Set Font Size

You can set content font size using size attribute. The range of accepted values is from

1(smallest) to 7(largest). The default size of a font is 3.

Example

<!DOCTYPE html>

<html>

<head>

<title>Setting Font Size</title>

</head>

<body>

Font size="1"

Font size="2"

Font size="3"

Font size="4"

Font size="5"

Font size="6"

Font size="7"

</body>

</html>

This will produce following result:

Font size="1"
Font size="2"
Font size="3"
Font size="4"
Font size="5"
Font size="6"
Font size="7"

Relative Font Size

You can specify how many sizes larger or how many sizes smaller than the preset font

size should be. You can specify it like or

Example:

<!DOCTYPE html>

<html>

<head>

<title>Relative Font Size</title>

</head>

<body>

Font size="-1"

Font size="+1"

Font size="+2"

Font size="+3"

Font size="+4"

</body>

</html>

This will produce following result:

Font size="-1"
Font size="+1"
Font size="+2"
Font size="+3"
Font size="+4"

Setting Font Face

You can set font face using face attribute but be aware that if the user viewing the page

doesn't have the font installed, they will not be able to see it. Instead user will see the default

font face applicable to the user's computer.

Example

<!DOCTYPE html>

<html>

<head>

<title>Font Face</title>

</head>

<body>

Times New Roman

Verdana

Comic Sans MS

WildWest

Bedrock

</body>

</html>

This will produce following result:

Times New Roman
Verdana
Comic Sans MS
WildWest
Bedrock

Specify alternate font faces

A visitor will only be able to see your font if they have that font installed on their

computer. So, it is possible to specify two or more font face alternatives by listing the font face

names, separated by a comma.

<fontface="arial,helvetica">

<fontface="Lucida Calligraphy,Comic Sans MS,Lucida Console">

When your page is loaded, their browser will display the first font face available. If none of the

given fonts are installed, then it will display the default font face Times New Roman.

Setting Font Color

We can set any font color you like using color attribute. You can specify the color that

you want by either the color name or hexadecimal code for that color.

Example

<!DOCTYPE html>

<html>

<head>

<title>Setting Font Color</title>

</head>

<body>

This text is in pink

This text is red

</body>

</html>

This will produce following result:

This text is in pink
This text is red

The <basefont> Element:

The <basefont> element is supposed to set a default font size, color, and typeface for

any parts of the document that are not otherwise contained within a tag. You can use the

 elements to override the <basefont> settings.

The <basefont> tag also takes color, size and face attributes and it will support relative

font setting by giving size a value of +1 for a size larger or -2 for two sizes smaller.

Example

<!DOCTYPE html>

<html>

<head>

<title>Setting Basefont Color</title>

</head>

<body>

<basefontface="arial, verdana, sans-serif"size="2"color="#ff0000">

<p>This is the page's default font.</p>

<h2>Example of the <basefont> Element</h2>

<p><fontsize="+2"color="darkgray">

This is darkgray text with two sizes larger

</p>

<p><fontface="courier"size="-1"color="#000000">

It is a courier font, a size smaller and black in color.

</p>

</body>

</html>

This will produce following result:

This is the page's default font.

Example of the <basefont> Element

This is darkgray text with two sizes larger

It is a courier font, a size smaller and black in color.

Images are very important to beautify as well as to depict many complex concepts in simple way

on your web page. This tutorial will take you through simple steps to use images in your web

pages.

Insert Image

We can insert any image in your web page by using tag. Following is the simple

syntax to use this tag.

<imgsrc="Image URL" ... attributes-list/>

The tag is an empty tag, which means that it can contain only list of attributes and

it has no closing tag.

Example

To try following example, let's keep our HTML file test.htm and image file test.png in the

same directory:

<!DOCTYPE html>

<html>

<head>

<title>Using Image in Webpage</title>

</head>

<body>

<p>Simple Image Insert</p>

<imgsrc="/html/images/test.png"alt="Test Image"/>

</body>

</html>

This will produce following result:

Simple Image Insert

We can use PNG, JPEG or GIF image file based on your comfort but make sure you
specify correct image file name in src attribute. Image name is always case sensitive.

The alt attribute is a mandatory attribute which specifies an alternate text for an image, if

the image cannot be displayed.

Set Image Location

Usually we keep our all the images in a separate directory. So let's keep HTML file

test.htm in our home directory and create a subdirectory images inside the home directory

where we will keep our image test.png.

Example

Assuming our image location is "/html/image/test.png", try the following example:

<!DOCTYPE html>

<html>

<head>

<title>Using Image in Webpage</title>

</head>

<body>

<p>Simple Image Insert</p>

<imgsrc="/html/images/test.png"alt="Test Image"/>

</body>

</html>

This will produce following result:

Simple Image Insert

Set Image Width/Height

We can set image width and height based on your requirement using width

and height attributes. You can specify width and height of the image in terms of either pixels or

percentage of its actual size.

Example

<!DOCTYPE html>

<html>

<head>

<title>Set Image Width and Height

</title>

</head>

<body>

<p>Setting image width and height</p>

<imgsrc="/html/images/test.png"alt="Test Image"width="150"height="100"/>

</body>

</html>

This will produce following result:

Setting image width and height

Set Image Border

By default image will have a border around it, you can specify border thickness in terms
of pixels using border attribute. A thickness of 0 means, no border around the picture.

Example

<!DOCTYPE html>

<html>

<head>

<title>Set Image Border</title>

</head>

<body>

<p>Setting image Border</p>

<imgsrc="/html/images/test.png"alt="Test Image"border="3"/>

</body>

</html>

This will produce following result:

Setting image Border

Set Image Alignment

By default image will align at the left side of the page, but you can use align attribute to

set it in the center or right.

Example

<!DOCTYPE html>

<html>

<head>

<title>Set Image Alignment</title>

</head>

<body>

<p>Setting image Alignment</p>

<imgsrc="/html/images/test.png"alt="Test Image"border="3"align="right"/>

</body>

</html>

This will produce following result:

Setting image Alignment

Some characters are reserved in HTML and they have special meaning when used in

HTML document. For example, you cannot use the greater than and less than signs or angle

brackets within your HTML text because the browser will treat them differently and will try to

draw a meaning related to HTML tag.

HTML processors must support following five special characters listed in the table that

follows.

Symbol Description Entity Name Number Code

" quotation mark " "

' apostrophe ' '

& Ampersand & &

< less-than < <

> greater-than > >

Example

If you want to write <div id="character"> as a code then you will have to write as follows:

<!DOCTYPE html>

<html>

<head>

<title>HTML Entities</title>

</head>

<body>

<div id="character">

</body>

</html>

This will produce following result:

<div id="character">

HTML META TAG

HTML lets you specify metadata - additional important information about a document in

a variety of ways. The META elements can be used to include name/value pairs describing

properties of the HTML document, such as author, expiry date, a list of keywords, document

author etc.

The <meta> tag is used to provide such additional information. This tag is an empty

element and so does not have a closing tag but it carries information within its attributes.

We can include one or more meta tags in your document based on what information you

want to keep in your document but in general, meta tags do not impact physical appearance of

the document so from appearance point of view, it does not matter if you include them or not.

Adding Meta Tags to Your Documents

We can add metadata to your web pages by placing <meta> tags inside the header of

the document which is represented by <head> and </head> tags. A meta tag can have

following attributes in addition to core attributes:

Attribute Description

Name Name for the property. Can be anything. Examples include, keywords,
description, author, revised, generator etc.

content Specifies the property's value.

scheme Specifies a scheme to interpret the property's value (as declared in the
content attribute).

http-
equiv

Used for http response message headers. For example http-equiv can be
used to refresh the page or to set a cookie. Values include content-type,
expires, refresh and set-cookie.

Specifying Keywords

We can use <meta> tag to specify important keywords related to the document and later

these keywords are used by the search engines while indexing your webpage for searching

purpose.

Example

Following is an example where we are adding HTML, Meta Tags, Metadata as important

keywords about the document.

<!DOCTYPE html>

<html>

<head>

<title>Meta Tags Example</title>

<metaname="keywords"content="HTML, Meta Tags, Metadata"/>

</head>

<body>

<p>Hello HTML5!</p>

</body>

</html>

This will produce following result:

Hello HTML5!

Document Description

We can use <meta> tag to give a short description about the document. This again can

be used by various search engines while indexing your webpage for searching purpose.

Example

<!DOCTYPE html>

<html>

<head>

<title>Meta Tags Example</title>

<metaname="keywords" content="HTML, Meta Tags, Metadata"/>

<metaname="description" content="Learning about Meta Tags."/>

</head>

<body>

<p>Hello HTML5!</p>

</body>

</html>

Document Revision Date

We can use <meta> tag to give information about when last time the document was

updated. This information can be used by various web browsers while refreshing your webpage.

Example

<!DOCTYPE html>

<html>

<head>

<title>Meta Tags Example</title>

<metaname="keywords"content="HTML, Meta Tags, Metadata"/>

<metaname="description"content="Learning about Meta Tags."/>

<metaname="revised"content="Tutorialspoint, 3/7/2014"/>

</head>

<body>

<p>Hello HTML5!</p>

</body>

</html>

Document Refreshing

A <meta> tag can be used to specify a duration after which your web page will keep

refreshing automatically.

Example

If you want your page keep refreshing after every 5 seconds then use the following syntax.

<!DOCTYPE html>

<html>

<head>

<title>Meta Tags Example</title>

<metaname="keywords"content="HTML, Meta Tags, Metadata"/>

<metaname="description"content="Learning about Meta Tags."/>

<metaname="revised"content="Tutorialspoint, 3/7/2014"/>

<metahttp-equiv="refresh"content="5"/>

</head>

<body>

<p>Hello HTML5!</p>

</body>

</html>

Page Redirection

We can use <meta> tag to redirect your page to any other webpage. You can also

specify a duration if you want to redirect the page after a certain number of seconds.

Example

Following is an example of redirecting current page to another page after 5 seconds. If

you want to redirect page immediately then do not specify contentattribute.

<!DOCTYPE html>

<html>

<head>

<title>Meta Tags Example</title>

<metaname="keywords"content="HTML, Meta Tags, Metadata"/>

<metaname="description"content="Learning about Meta Tags."/>

<metaname="revised"content="Tutorialspoint, 3/7/2014"/>

<metahttp-equiv="refresh"content="5; url=https://www.tutorialspoint.com"/>

</head>

<body>

<p>Hello HTML5!</p>

</body>

</html>

-

http://www.tutorialspoint.com/

UNIT 2

HTML 5 AND CSS3(CASCADE STYLE SHEET)

 HTML5 and Advanced HTML :

 HTML5 :

What is HTML5?

HTML5 is a markup language used for structuring and presenting content on the World

Wide Web. It is the fifth and current version of the HTML standard.

HTML5 is a markup language used for structuring and presenting content on the World

Wide Web. It is the fifth and current version of the HTML standard.

It was published in October 2014 by the World Wide Web Consortium (W3C) to improve

the language with support for the latest multimedia, while keeping it both easily readable by

humans and consistently understood by computers and devices such as web browsers, parsers,

etc. HTML5 is intended to subsume not only HTML 4, but also XHTML 1 and DOM Level 2

HTML.

HTML5 includes detailed processing models to encourage more interoperable

implementations; it extends, improves and rationalizes the markup available for documents, and

introduces markup and application programming interfaces (APIs) for complex web applications.

For the same reasons, HTML5 is also a candidate for cross-platform mobile applications,

because it includes features designed with low-powered devices in mind.

Many new syntactic features are included. To natively include and handle multimedia

and graphical content, the new <video>, <audio> and <canvas> elements were added, and

support for scalable vector graphics (SVG) content and MathML for mathematical formulas. To

enrich the semantic content of documents, new page structure elements such as <main>,

<section>, <article>, <header>, <footer>, <aside>, <nav> and <figure>, are added. New

attributes are introduced, some elements and attributes have been removed, and others such

as <a>, <cite> and <menu> have been changed, redefined or standardized.

The APIs and Document Object Model (DOM) are now fundamental parts of the HTML5

specification and HTML5 also better defines the processing for any invalid documents.

The default character encoding in HTML5 is UTF-8
The DOCTYPE declaration for HTML5 is very simple

<!DOCTYPE html>

The character encoding (charset) declaration is also very simple

<meta charset="UTF-8">

https://en.wikipedia.org/wiki/MathML
https://en.wikipedia.org/wiki/Article_element_%28HTML5%29

HTML5 Example

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<title>Title of the document</title>

</head>

<body>

Content of the document......

</body>

</html>

Difference between HTML and HTML5

Html Html5

Doctype declaration in Html is too longer
<!DOCTYPE HTML PUBLIC "-//W3C//DTD
HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

DOCTYPE declaration in Html5 is very simple
"<!DOCTYPE html>

character encoding in Html is also longer
<!DOCTYPE HTML PUBLIC "-//W3C//DTD
HTML 4.0 Transitional//EN">

character encoding (charset) declaration is also
very simple <meta charset="UTF-8">

Audio and Video are not part of HTML4

Audio and Videos are integral part of HTML5
e.g. <audio> and <video> tags.

Vector Graphics is possible with the help of
technologies such as VML, Silverlight, Flash
etc

Vector graphics is integral part of HTML5 e.g.
SVG and canvas

It is almost impossible to get true
GeoLocation of user browsing any website
especially if it comes to mobile devices.

JS GeoLocation API in HTML5 helps identify
location of user browsing any website (provided
user allows it)

Html5 use cookies.

It provides local storage in place of cookies.

Not possible to draw shapes like circle,
rectangle, triangle.

Using Html5 you can draw shapes like circle,
rectangle, triangle.

Does not allow JavaScript to run in browser.
JS runs in same thread as browser interface.

Allows JavaScript to run in background. This is
possible due to JS Web worker API in HTML5

Works with all old browsers Supported by all new browser.

http://www.w3.org/TR/html4/strict.dtd
http://www.w3.org/TR/html4/strict.dtd

New elements in HTML5

The most interesting new HTML5 elements are:

 New semantic elements like <header>, <footer>, <article>, and <section>.

 New attributes of form elements like number, date, time, calendar, and range.

 New graphic elements: <svg> and <canvas>.

 New multimedia elements: <audio> and <video>.

Canvas elements

The HTML <canvas> element is used to draw graphics on a web page. The HTML

<canvas> element is used to draw graphics via JavaScript.

The <canvas> element is only a container for graphics. You must use JavaScript to

actually draw the graphics. Canvas has several methods for drawing paths, boxes, circles, text,

and adding images.

Media elements:

Multimedia on the web is sound, music, videos, movies, and animations. Multimedia

comes in many different formats. It can be almost anything you can hear or see.

Examples: Images, music, sound, videos, records, films, animations, and more.

Web pages often contain multimedia elements of different types and formats.

Browser Support

The first web browsers had support for text only, limited to a single font in a single color

Later came browsers with support for colors and fonts, and images. Audio, video, and animation

have been handled differently by the major browsers. Different formats have been supported,

and some formats require extra helper programs (plug-ins) to work.HTML5 multimedia promises

an easier future for multimedia.

Multimedia Formats

Multimedia elements (like audio or video) are stored in media files. The most common

way to discover the type of a file, is to look at the file extension.Multimedia files have formats

and different extensions like: .swf, .wav, .mp3, .mp4, .mpg, .wmv, and .avi.

Semantic and structural element

Semantics is the study of the meanings of words and phrases in a language.

Semantic elements = elements with a meaning.

What are Semantic Elements?

A semantic element clearly describes its meaning to both the browser and the

developer.

Examples of non-semantic elements: <div> and - Tells nothing about its content.

Examples of semantic elements: <form>, <table>, and <article> - Clearly defines its content.

HTML5 semantic elements are supported in all modern browsers.In addition, you can "teach"
older browsers how to handle "unknown elements".

New Semantic Elements in HTML5

Many web sites contain HTML code like: <div id="nav"> <div class="header"> <div

id="footer"> to indicate navigation, header, and footer.

HTML5 offers new semantic elements to define different parts of a web page:

 <article>

 <aside>

 <details>

 <figcaption>

 <figure>

 <footer>

 <header>

 <main>

 <mark>

 <nav>

 <section>

 <summary>

 <time>

HTML5 <section> Element

The <section> element defines a section in a document. A section is a thematic grouping

of content, typically with a heading.

A home page could normally be split into sections for introduction, content, and contact

information.

Example

<section>
<h1>WWF</h1>
<p>The World Wide Fund for Nature (WWF) is. .. </p>

</section>

HTML5 <article> Element

The <article> element specifies independent, self-contained content.An article should

make sense on its own, and it should be possible to read it independently from the rest of the

web site.

Examples of where an <article> element can be used:

 Forum post

 Blog post

 Newspaper article

Example

<article>
<h1>What Does WWF Do?</h1>
<p>WWF's mission is to stop the degradation of our planet's natural environment,
and build a future in which humans live in harmony with nature.</p>

</article>

Nesting <article> in <section> or Vice Versa?

The <article> element specifies independent, self-contained content.

The <section> element defines section in a document.

On the Internet, you will find HTML pages with <section> elements containing <article>

elements, and <article> elements containing <sections> elements.You will also find pages with

<section> elements containing <section> elements, and <article> elements containing <article>

elements.

Example for a newspaper: The sport articles in the sport section, may have a technical

section in each article.

HTML5 <header> Element

The <header> element specifies a header for a document or section.The <header>

element should be used as a container for introductory content. We can have several <header>

elements in one document. The following example defines a header for an article:

Example

<article>

<header>

<h1>What Does WWF Do?</h1>

<p>WWF's mission:</p>

</header>

<p>WWF's mission is to stop the degradation of our planet's natural environment,

and build a future in which humans live in harmony with nature.</p>

</article>

HTML5 <footer> Element

The <footer> element specifies a footer for a document or section. A <footer> element

should contain information about its containing element.

A footer typically contains the author of the document, copyright information, links to

terms of use, contact information, etc. You may have several <footer> elements in one

document.

Example

<footer>

<p>Posted by: Hege Refsnes</p>

<p>Contact information:

someone@example.com.</p>

</footer>

HTML5 <nav> Element

The <nav> element defines a set of navigation links.

Notice that NOT all links of a document should be inside a <nav> element. The <nav>

element is intended only for major block of navigation links.

Example

<nav>

HTML |

mailto:someone@example.com
mailto:someone@example.com
mailto:someone@example.com

CSS |

JavaScript |

jQuery

</nav>

HTML5 <aside> Element

The <aside> element defines some content aside from the content it is placed in (like a sidebar).

The aside content should be related to the surrounding content.

Example

<p>My family and I visited The Epcot center this summer.</p>

<aside>

<h4>Epcot Center</h4>

<p>The Epcot Center is a theme park in Disney World, Florida.</p>

</aside>

HTML5 <figure> and <figcaption> Elements

The purpose of a figure caption is to add a visual explanation to an image.

In HTML5, an image and a caption can be grouped together in a <figure> element:

Example

<figure>

<figcaption>Fig1.-The Pulpit Rock, Norway.</figcaption>

</figure>

The element defines the image, the <figcaption> element defines the caption.

Why Semantic Elements?

With HTML4, developers used their own id/class names to style elements: header, top,

bottom, footer, menu, navigation, main, container, content, article, sidebar, topnav, etc.

This made it impossible for search engines to identify the correct web page content. With

the new HTML5 elements (<header> <footer> <nav> <section> <article>), this will become

easier.A Semantic Web allows data to be shared and reused across applications, enterprises,

and communities.

Semantic Elements in HTML5

Below is an alphabetical list of the new semantic elements in HTML5.

Tag Description

<article> Defines an article

<aside> Defines content aside from the page content

<details> Defines additional details that the user can view or hide

<figcaption> Defines a caption for a <figure> element

<figure> Specifies self-contained content, like illustrations, diagrams, photos, code

listings, etc.

<footer> Defines a footer for a document or section

<header> Specifies a header for a document or section

<main> Specifies the main content of a document

<mark> Defines marked/highlighted text

<nav> Defines navigation links

<section> Defines a section in a document

<summary> Defines a visible heading for a <details> element

<time> Defines a date/time

New graphic elements : <canvas> and <svg>

<canvas> element

The HTML <canvas> element is used to draw graphics via JavaScript.

The <canvas> element is only a container for graphics. You must use JavaScript to

actually draw the graphics. Canvas has several methods for drawing paths, boxes, circles, text,

and adding images.

Canvas Examples

A canvas is a rectangular area on an HTML page. By default, a canvas has no border

and no content. The markup looks like the one given below

<canvas id="myCanvas" width="200" height="100"></canvas>

Note: Always specify an id attribute (to be referred to in a script), and a width and height

attribute to define the size of the canvas. To add a border, use the style attribute. Here is an

example of a basic, empty canvas:

https://www.w3schools.com/tags/tag_figcaption.asp
https://www.w3schools.com/tags/tag_nav.asp

Example

<canvas id="myCanvas" width="200" height="100" style="border:1px solid #000000;">
</canvas>

Draw a Line

Example

var c = document.getElementById("myCanvas");

var ctx = c.getContext("2d");

ctx.moveTo(0,0);

ctx.lineTo(200,100);

ctx.stroke();

Draw a Circle:

Example

var c = document.getElementById("myCanvas");

var ctx = c.getContext("2d");

ctx.beginPath();

ctx.arc(95,50,40,0,2*Math.PI);

ctx.stroke();

Draw a Text :

Example

var c = document.getElementById("myCanvas");

var ctx = c.getContext("2d");

ctx.font = "30px Arial";

ctx.fillText("Hello World",10,50);

HTML Canvas Can Draw Text

Canvas can draw colorful text, with or without animation.

HTML Canvas Can Draw Graphics

Canvas has great features for graphical data presentation with an imagery of graphs and

charts.

HTML Canvas Can be Animated

Canvas objects can move. Everything is possible: from simple bouncing balls to complex

animations.

HTML Canvas Can be Interactive

Canvas can respond to JavaScript events. Canvas can respond to any user action (key

clicks, mouse clicks, button clicks, finger movement).

HTML Canvas Can be Used in Games

Canvas' methods for animations, offer a lot of possibilities for HTML gaming

applications.

Canvas Example

In HTML, a <canvas> element looks like this:

<canvas id="myCanvas" width="200" height="100"></canvas>

The <canvas> element must have an id attribute so it can be referred to by

JavaScript.The width and height attribute is necessary to define the size of the canvas.

Tip: You can have multiple <canvas> elements on one HTML page.

By default, the <canvas> element has no border and no content.To add a border, use a

style attribute:

Example

<canvas id="myCanvas" width="200" height="100"

style="border:1px solid #000000;">

</canvas>

<svg> element

What is SVG?

 SVG stands for Scalable Vector Graphics

 SVG is used to define graphics for the Web

<svg> tag

Html5 introduce new tag <svg>, SVG stands for Scalable Vector Graphics. It is used

to define graphics for the Web. <svg> tag is container for SVG graphics.

SVG has several methods for drawing paths, boxes, circles, text, and graphic images. It

is mostly used for vector type diagrams like pie charts, 2-Dimensional graphs in an X,Y

coordinate system etc.

SVG Circle

Example

<!DOCTYPE html>

<html>

<body>

<svg width="100" height="100">

<circle cx="50" cy="50" r="40" stroke="green" stroke-width="4" fill="yellow" />

</svg>

</body>

</html>

Differences Between SVG and Canvas

SVG is a language for describing 2D graphics in XML. Canvas draws 2D graphics, on

the fly (with a JavaScript).

SVG is XML based, which means that every element is available within the SVG DOM.

We can attach JavaScript event handlers for an element.

In SVG, each drawn shape is remembered as an object. If attributes of an SVG object

are changed, the browser can automatically re-render the shape.

Canvas is rendered pixel by pixel. In canvas, once the graphic is drawn, it is forgotten by

the browser. If its position should be changed, the entire scene needs to be redrawn, including

any objects that might have been covered by the graphic.

Comparison of Canvas and SVG

The table below shows some important differences between Canvas and SVG:

Canvas SVG

Resolution dependent

 No support for event handlers

 Poor text rendering capabilities

 You can save the resulting image as

.png or .jpg

 Well suited for graphic-intensive games

Resolution independent

 Support for event handlers

 Best suited for applications with large

rendering areas (Google Maps)

 Slow rendering if complex (anything

that uses the DOM a lot will be slow)

 Not suited for game applications

 Advanced HTML

A webpage can contain various links that take you directly to other pages and even

specific parts of a given page. These links are known as hyperlinks.

Hyperlinks allow visitors to navigate between Web sites by clicking on words, phrases,

and images. Thus you can create hyperlinks using text or images available on a webpage.

Links

HTML links are hyperlinks. Just click the link and jump to another document. When the

mouse is moved over a link, the mouse arrow will turn into a little hand. A link does not have to

be text. It can be an image or any other HTML element.

HTML Links - Syntax

In HTML, links are defined with the <a> tag:

link text

Example

Visit our HTML tutorial

The href attribute specifies the destination address (https://www.w3schools.com/html/)

of the link.The link text is the visible part (Visit our HTML tutorial).Clicking on the link text will

send you to the specified address.

http://www.w3schools.com/html/
http://www.w3schools.com/html/)

Local Links

The example above used an absolute URL (A full web address). A local link (link to the

same web site) is specified with a relative URL (without http://www ...).

Example

HTML Images

HTML Link Colors

By default, a link will appear like this (in all browsers):

 An unvisited link is underlined and blue

 A visited link is underlined and purple

 An active link is underlined and red

The default colors can be changed by using styles.

Example

<style>

a:link {

color: green;

background-color: transparent;

text-decoration: none;

}

a:visited {

color: pink;

background-color: transparent;

text-decoration: none;

}

a:hover {

color: red;

background-color: transparent;

text-decoration: underline;

}

a:active {

color: yellow;

background-color: transparent;

text-decoration: underline;

http://www/

}

</style>

HTML Links - The target Attribute

The target attribute specifies where to open the linked document.

The target attribute can have one of the following values:

 _blank - Opens the linked document in a new window or tab

 _self - Opens the linked document in the same window/tab as it was clicked (this is
default)

 _parent - Opens the linked document in the parent frame

 _top - Opens the linked document in the full body of the window

 framename - Opens the linked document in a named frame

This example will open the linked document in a new browser window/tab:

Example

Visit W3Schools!

If the webpage is locked in a frame, use target="_top" to break out of the frame:

Example

HTML5 tutorial!

HTML Links - Image as Link

It is common to use images as links:

Example

HTML Links - Create a Bookmark

HTML bookmarks are used to allow readers to jump to specific parts of a Web

page.Bookmarks can be useful if webpage is very long. To make a bookmark, first create the

bookmark, and then add a link to it.When the link is clicked, the page will scroll to the location

with the bookmark.

Example

First, create a bookmark with the id attribute:

http://www.w3schools.com/
http://www.w3schools.com/html/

<h2 id="C4">Chapter 4</h2>

Then, add a link to the bookmark ("Jump to Chapter 4"), from within the same page:

Jump to Chapter 4

Or, add a link to the bookmark ("Jump to Chapter 4"), from another page:

Example

Jump to Chapter 4

External Paths

External pages can be referenced with a full URL or with a path relative to the current web
page.

This example uses a full URL to link to a web page:

Example

HTML tutorial
This example links to a page located in the html folder on the current web site:

Example

HTML tutorial
This example links to a page located in the same folder as the current page:

Example

HTML tutorial

Summary

 Use the <a> element to define a link

 Use the href attribute to define the link address

 Use the target attribute to define where to open the linked document

 Use the element (inside <a>) to use an image as a link

 Use the id attribute (id="value") to define bookmarks in a page

Use the href attribute (href="#value") to link to the bookmark

Lists

HTML offers web authors three ways for specifying lists of information. All lists must

contain one or more list elements. Lists may contain:

• - An unordered list. This will list items using plain bullets.
• - An ordered list. This will use different schemes of numbers to list your items.

http://www.w3schools.com/html/default.asp

• <dl> - A definition list. This arranges your items in the same way as they are arranged
in a dictionary.

HTML Unordered Lists

An unordered list is a collection of related items that have no special order or sequence.

This list is created by using HTML tag. Each item in the list is marked with a bullet.

Example

<!DOCTYPE html>

<html>

<head>

<title>HTML Unordered List</title>

</head>

<body>

Beetroot

Ginger

Potato

Radish

</body>

</html>

This will produce following result:

 Beetroot

 Ginger

 Potato

Radish

The type Attribute

We can use type attribute for tag to specify the type of bullet you like. By default it is

a disc. Following are the possible options:

<ul type="square">

<ul type="disc">

<ul type="circle">

Example

Following is an example where we used <ul type="square">

<!DOCTYPE html>

<html>

<head>

<title>HTML Unordered List</title>

</head>

<body>

<ul type="square">

Beetroot

Ginger

Potato

Radish

</body>

</html>

This will produce following result:

 Beetroot

 Ginger

 Potato

 Radish

Example

Following is an example where we used <ul type="disc"> :

<!DOCTYPE html>

<html>

<head>

<title>HTML Unordered List</title>

</head>

<body>

<ul type="disc">

Beetroot

Ginger

Potato

Radish

</body>

</html>

This will produce following result:
• Beetroot
• Ginger
• Potato

• Radish

Example

Following is an example where we used <ul type="circle"> :

<!DOCTYPE html>

<html>

<head>

<title>HTML Unordered List</title>

</head>

<body>

<ul type="circle">

Beetroot

Ginger

Potato

Radish

</body>

</html>

This will produce following result:

o Beetroot oGinger oPotato
o Radish

HTML Ordered Lists

If you are required to put your items in a numbered list instead of bulleted then HTML

ordered list will be used. This list is created by using tag. The numbering starts at one and

is incremented by one for each successive ordered list element tagged with .

Example

<!DOCTYPE html>

<html>

<head>

<title>HTML Ordered List</title>

</head>

<body>

Beetroot

Ginger

Potato

Radish

</body>

</html>

This will produce following result:

1. Beetroot

2. Ginger

3. Potato

4. Radish

The type Attribute

We can use type attribute for tag to specify the type of numbering you like. By
default it is a number. Following are the possible options:

<ol type="1"> - Default-Case Numerals.

<ol type="I"> - Upper-Case Numerals.

<ol type="i"> - Lower-Case Numerals.

<ol type="a"> - Lower-Case Letters.

<ol type="A"> - Upper-Case Letters.

Example

Following is an example where we used <ol type="1">

<!DOCTYPE html>

<html>

<head>

<title>HTML Ordered List</title>

</head>

<body>

<ol type="1">

Beetroot

Ginger

Potato

Radish

</body>

</html>

This will produce following result:

1. Beetroot

2. Ginger

3. Potato

4. Radish

Example

Following is an example where we used <ol type="I">

<!DOCTYPE html>

<html>

<head>

<title>HTML Ordered List</title>

</head>

<body>

<ol type="I">

Beetroot

Ginger

Potato

Radish

</body>

</html>

This will produce following result:

I. Beetroot

II. Ginger

III. Potato

IV. Radish

Example

Following is an example where we used <ol type="i">

<!DOCTYPE html>

<html>

<head>

<title>HTML Ordered List</title>

</head>

<body>

<ol type="i">

Beetroot

Ginger

Potato

Radish

</body>

</html>

This will produce following result:

i. Beetroot

ii. Ginger

iii. Potato

iv. Radish

Example

Following is an example where we used <ol type="A">
<!DOCTYPE html>

<html>

<head>

<title>HTML Ordered List</title>

</head>

<body>

<ol type="A">

Beetroot

Ginger

Potato

Radish

</body>

</html>

This will produce following result:

A. Beetroot

B. Ginger

C. Potato

D. Radish

Example

Following is an example where we used <ol type="a">
<!DOCTYPE html>

<html>

<head>

<title>HTML Ordered List</title>

</head>

<body>

<ol type="a">

Beetroot

Ginger

Potato

Radish

</body>

</html>

This will produce following result:

a. Beetroot

b. Ginger

c. Potato

d. Radish
The start Attribute

We can use start attribute for tag to specify the starting point of numbering you

need. Following are the possible options:

<ol type="1" start="4"> - Numerals starts with 4.

<ol type="I" start="4"> - Numerals starts with IV.

<ol type="i" start="4"> - Numerals starts with iv.

<ol type="a" start="4"> - Letters starts with d.

<ol type="A" start="4"> - Letters starts with D.

Example

Following is an example where we used <ol type="i" start="4" ><!DOCTYPE html>
<html>

<head>

<title>HTML Ordered List</title>

</head>

<body>

<ol type="i" start="4">

Beetroot

Ginger

Potato

Radish

</body>

</html>

This will produce following result:

iv. Beetroot

v. Ginger

vi. Potato

vii. Radish

HTML Definition Lists

HTML and XHTML support a list style which is called definition lists where entries are

listed like in a dictionary or encyclopedia. The definition list is the ideal way to present a

glossary, list of terms, or other name/value list. Definition List makes use of following three tags.

• <dl> - Defines the start of the list

• <dt> - A term

• <dd> - Term definition

• </dl> - Defines the end of the list

Example

<!DOCTYPE html>

<html>

<head>

<title>HTML Definition List</title>

</head>

<body>

<dl>

<dt>HTML</dt>

<dd>This stands for Hyper Text Markup Language</dd>

<dt>HTTP</dt>

<dd>This stands for Hyper Text Transfer Protocol</dd>

</dl>

</body>

</html>

This will produce following result:
HTML

This stands for Hyper Text Markup Language
HTTP

This stands for Hyper Text Transfer Protocol

HTML tables

The HTML tables allow web authors to arrange data like text, images, links, other tables,

etc. into rows and columns of cells.

tr and td Tags

The HTML tables are created using the <table> tag in which the <tr> tag is used to

create table rows and <td> tag is used to create data cells.

Here border is an attribute of <table> tag and it is used to put a border across all the

cells. If you do not need a border then you can use border="0". Table Heading

Table heading can be defined using <th> tag. This tag will be put to replace <td> tag,

which is used to represent actual data cell. Normally you will put your top row as table heading

as shown below, otherwise you can use <th> element in any row.

Example

<!DOCTYPE html>

<html>

<head>

<title>HTML Table Header</title>

</head>

<body>

<table border="1">

<tr>

<th>Name</th>

<th>Salary</th>

</tr>

<tr>

<td>Ramesh Raman</td>

<td>5000</td>

</tr>

<tr>

<td>Shabbir Hussein</td>

<td>7000</td>

</tr>

</table>

</body>

</html>

This will produce following result:

Name Salary

Ramesh Raman

5000

Shabbir Hussein 7000

Cellpadding and Cellspacing Attributes

There are two attribiutes called cellpadding and cellspacing which you will use to adjust

the white space in your table cells. The cellspacing attribute defines the width of the border,

while cellpadding represents the distance between cell borders and the content within a cell.

Example

<!DOCTYPE html>
<html>

<head>

<title>HTML Table Cellpadding</title>

</head>

<body>

<table border="1" cellpadding="5" cellspacing="5">

<tr>

<th>Name</th>

<th>Salary</th>

</tr>

<tr>

<td>Ramesh Raman</td>

<td>5000</td>

</tr>

<tr>

<td>Shabbir Hussein</td>

<td>7000</td>

</tr>

</table>

</body>

</html>

This will produce following result:

Name Salary

Ramesh Raman 5000

Shabbir Hussein 7000

Colspan and Rowspan Attributes

You will use colspan attribute if you want to merge two or more columns into a single

column. Similar way you will use rowspan if you want to merge two or more rows.

Example

<html>

<head>

<title>HTML Table Colspan/Rowspan</title>

</head>

<body>

<table border="1">

<tr>

<th>Column 1</th>

<th>Column 2</th>

<th>Column 3</th>

</tr>

<tr><td rowspan="2">Row 1 Cell 1</td><td>Row 1 Cell

2</td><td>Row 1 Cell 3</td></tr>

<tr><td>Row 2 Cell 2</td><td>Row 2 Cell 3</td></tr>

<tr><td colspan="3">Row 3 Cell 1</td></tr>

</table>

</body>

</html>

This will produce following result:

Column 1 Column 2 Column 3

Row 1 Cell 1

Row 1 Cell 2 Row 1 Cell 3

Row 2 Cell 2 Row 2 Cell 3

Row 3 Cell 1

Tables Backgrounds

We can set table background using one of the following two ways:

 bgcolor attribute - You can set background color for whole table or just for one cell.

 background attribute - You can set background image for whole table or just for one

cell.

We can also set border color also using bordercolor attribute.

Example

<html>

<head>

<title>HTML Table Background</title>

</head>

<body>

<table border="1" bordercolor="green" bgcolor="yellow"><tr>

<th>Column 1</th>

<th>Column 2</th>

<th>Column 3</th></tr>

<tr><td rowspan="2">Row 1 Cell 1</td><td>Row 1 Cell

2</td><td>Row 1 Cell 3</td></tr>

<tr><td>Row 2 Cell 2</td><td>Row 2 Cell 3</td></tr>

<tr><td colspan="3">Row 3 Cell 1</td></tr>

</table>

</body>

</html>

This will produce following result:

Column 1 Column 2 Column 3

Row 1 Cell 1

Row 1 Cell 2 Row 1 Cell 3

Row 2 Cell 2 Row 2 Cell 3

Row 3 Cell 1

Table Height and Width

You can set a table width and height using width and height attributes.

You can specify table width or height in terms of pixels or in terms of percentage of available

screen area.

Example

<!DOCTYPE html>

<html>

<head>

<title>HTML Table Width/Height</title>

</head>

<body>

<table border="1" width="400" height="150">

<tr>

<td>Row 1, Column 1</td>

<td>Row 1, Column 2</td>

</tr>

<tr>

<td>Row 2, Column 1</td>

<td>Row 2, Column 2</td>

</tr>

</table>

</body>

</html>

This will produce following result:

Row 1, Column 1 Row 1, Column 2

Row 2, Column 1 Row 2, Column 2

Table Caption

The caption tag will serve as a title or explanation for the table and it shows up at the top of the

table. This tag is deprecated in newer version of HTML/XHTML.

Example

<!DOCTYPE html>

<html>

<head>

<title>HTML Table Caption</title>

</head>

<body>

<table border="1" width="100%">

<caption>This is the caption</caption>

<tr>

<td>row 1, column 1</td><td>row 1, columnn 2</td>

</tr>

<tr>

<td>row 2, column 1</td><td>row 2, columnn 2</td>

</tr></table></body>

</html>

This will produce following result:

This is the caption

row 1, column 1 row 1, columnn 2

row 2, column 1 row 2, columnn 2

Table Header, Body, and Footer

Tables can be divided into three portions: a header, a body, and a foot. The head

and foot are rather similar to headers and footers in a word-processed document that

remain the same for every page, while the body is the main content holder of the table.

The three elements for separating the head, body, and foot of a table are:

 <thead> - to create a separate table header.

 <tbody> - to indicate the main body of the table.

 <tfoot> - to create a separate table footer.

A table may contain several <tbody> elements to indicate different pages or groups of

data. But it is notable that <thead> and <tfoot> tags should appear before <tbody>

Example

<!DOCTYPE html>

<html>

<head>

<title>HTML Table</title>

</head>

<body>

<table border="1" width="100%">

<thead>

<tr>

<td colspan="4">This is the head of the table</td>

</tr>

</thead>

<tfoot>

<tr>

<td colspan="4">This is the foot of the table</td>

</tr>

</tfoot>

<tbody>

<tr>

<td>Cell 1</td>

<td>Cell 2</td>

<td>Cell 3</td>

<td>Cell 4</td>

</tr>

</tbody>

</table>

</body>

</html>

This will produce following result:

This is the head of the table

This is the foot of the table

Cell 1 Cell 2 Cell 3 Cell 4

HTML frames

HTML frames are used to divide your browser window into multiple sections where each

section can load a separate HTML document. A collection of frames in the browser window is

known as a frameset. The window is divided into frames in a similar way the tables are

organized: into rows and columns.

Disadvantages of Frames

There are few drawbacks with using frames, so it's never recommended to use frames in

your web pages:

 Some smaller devices cannot cope with frames often because their screen is not big
enough to be divided up.

 Sometimes your page will be displayed differently on different computers due to different
screen resolution.

 The browser's back button might not work as the user hopes.

 There are still few browsers that do not support frame technology.

Creating Frames

To use frames on a page we use <frameset> tag instead of <body> tag. The <frameset>

tag defines how to divide the window into frames. The rows attribute of <frameset> tag defines

horizontal frames and cols attribute defines vertical frames. Each frame is indicated by <frame>

tag and it defines which HTML document shall open into the frame.

Example

Following is the example to create three horizontal frames:
<!DOCTYPE html>

<html>

<head>

<title>HTML Frames</title>

</head>

<frameset rows="10%,80%,10%">

<frame name="top" src="/html/top_frame.htm" />

<frame name="main" src="/html/main_frame.htm" />

<frame name="bottom" src="/html/bottom_frame.htm" />

<noframes>

<body>

Your browser does not support frames.

</body>

</noframes>

</frameset>

</html>

This will produce following result:

Example

Let's put above example as follows, here we replaced rows attribute by cols and

changed their width. This will create all the three frames vertically:

<!DOCTYPE html>

<html>

<head>

<title>HTML Frames</title>

</head>

<frameset cols="25%,50%,25%">

<frame name="left" src="/html/top_frame.htm" />

<frame name="center" src="/html/main_frame.htm" />

<frame name="right" src="/html/bottom_frame.htm" />

<noframes>

<body>

Your browser does not support frames.

</body>

</noframes>

</frameset>

</html>

This will produce following result:

The <frameset> Tag Attributes

Following are important attributes of the <frameset> tag:

Attribute

Description

cols
Specifies how many columns are contained in the frameset and the size

of each column. You can specify the width of each column in one of four

ways:

 Absolute values in pixels. For example to create three vertical
frames, use cols="100, 500,100".

 A percentage of the browser window. For example to create three

vertical frames, use cols="10%, 80%,10%".

 Using a wildcard symbol. For example to create three vertical
frames, use cols="10%,

 *,10%". In this case wildcard takes remainder of the window.

 As relative widths of the browser window. For example to create

three vertical frames, use cols="3*,2*,1*". This is an alternative to

percentages. You can use relative widths of the browser window.

Here the window is divided into sixths: the first column takes up

half of the window, the second takes one third, and the third takes

one sixth.

rows
This attribute works just like the cols attribute and takes the same values,

but it is used to specify the rows in the frameset. For example to create

two horizontal frames, use rows="10%, 90%". You can specify the height

of each row in the same way as explained above for columns.

border
This attribute specifies the width of the border of each frame in pixels. For

example border="5". A value of zero means no border.

frameborder
This attribute specifies whether a threedimensional border should be

displayed between frames. This attrubute takes value either 1 (yes) or 0

(no). For example frameborder="0" specifies no border.

framespacing
This attribute specifies the amount of space between frames in a

frameset. This can take any integer value. For example

framespacing="10" means there should be 10 pixels spacing between

each frames.

The <frame> Tag Attributes

Following are important attributes of <frame> tag:

Attribute Description

src

This attribute is used to give the file name that should be loaded in

the frame. Its value can be any URL. For example,

src="/html/top_frame.htm" will load an HTML file available in html

directory.

name This attribute allows you to give a name to a frame. It is used to

indicate which frame a document should be loaded into. This is

especially important when you want to create links in one frame that

load pages into an another frame, in which case the second frame

needs a name to identify itself as the target of the link.

frameborder

This attribute specifies whether or not the borders of that frame are

shown; it overrides the value given in the frameborder attribute on the

<frameset> tag if one is given, and this can take values either 1 (yes)

or 0 (no).

marginwidth This attribute allows you to specify the width of the space between

the left and right of the frame's borders and the frame's content. The

value is given in pixels. For example marginwidth="10".

marginheight This attribute allows you to specify the height of the space between

the top and bottom of the frame's borders and its contents. The value

is given in pixels. For example marginheight="10".

noresize By default you can resize any frame by clicking and dragging on the

borders of a frame. The noresize attribute prevents a user from being

able to resize the frame. For example noresize="noresize".

scrolling This attribute controls the appearance of the scrollbars that appear on

the frame. This takes values either "yes", "no" or "auto". For example

scrolling="no" means it should not have scroll bars.

longdesc This attribute allows you to provide a link to another page containing

a long description of the contents of the frame. For example

longdesc="framedescription.htm"

Browser Support for Frames

If a user is using any old browser or any browser which does not support frames then

<noframes> element should be displayed to the user.

So you must place a <body> element inside the <noframes> element because the <frameset>

element is supposed to replace the <body> element, but if a browser does not understand

<frameset> element then it should understand what is inside the <body> element which is
contained in a <noframes> element.

You can put some nice message for your user having old browsers. For example Sorry!! your

browser does not support frames. as shown in the above example.

Frame's name and target attributes

One of the most popular uses of frames is to place navigation bars in one frame and then load

main pages into a separate frame.

Let's see following example where a test.htm file has following code:

<!DOCTYPE html>

<html>

<head>

<title>HTML Target Frames</title>

</head>

<frameset cols="200, *">

<frame src="/html/menu.htm" name="menu_page" />

<frame src="/html/main.htm" name="main_page" />

<noframes>

<body>

Your browser does not support frames.

</body>

</noframes>

</frameset>

</html>

Here we have created two columns to fill with two frames. The first frame is 200 pixels

wide and will contain the navigation menu bar implemented by menu.htm file. The second

column fills in remaining space and will contain the main part of the page and it is implemented

by main.htm file. For all the three links available in menu bar, we have mentioned target frame

as main_page, so whenever you click any of the links in menu bar, available link will open in

main_page.

Following is the content of menu.htm file

<!DOCTYPE html>

<html>

<body bgcolor="#4a7d49">

Google

Microsoft

BBC

News

</body>

</html>

Following is the content of main.htm file:

<!DOCTYPE html>

<html>

<body bgcolor="#b5dcb3">

<h3>This is main page and content from any link will be displayed here.</h3>

<p>So now click any link and see the result.</p>

</body>

</html>

When we load test.htm file, it produces following result:

Now you can try to click links available in the left panel and see the result. The target attribute

can also take one of the following values:

Option Description

_self

Loads the page into the current frame.

_blank

Loads a page into a new browser window.opening a new window.

http://www.google.com/
http://www.microsoft.com/

_parent

Loads the page into the parent window, which in the case of a single
frameset is the main browser window.

_top

Loads the page into the browser window, replacing any current frames.

target frame

Loads the page into a named targetframe.

HTML Forms

HTML Forms are required when you want to collect some data from the site visitor. For

example during user registration you would like to collect information such as name, email

address, credit card, etc. A form will take input from the site visitor and then will post it to a back-

end application such as CGI, ASP Script or PHP script etc. The back-end application will

perform required processing on the passed data based on defined business logic inside the

application.

There are various form elements available like text fields, textarea fields, drop-down

menus, radio buttons, checkboxes, etc.

The HTML <form> tag is used to create an HTML form and it has following syntax:

<form action="Script URL" method="GET|POST"> form elements

like input, textarea etc.

</form>

Form Attributes

Apart from common attributes, following is a list of the most frequently used form

attributes:

Attribute Description

action

Backend script ready to process your passed data.

method
Method to be used to upload data. The most frequently used are GET and POST

methods.

target
Specify the target window or frame where the result of the script will be displayed.

It takes values like _blank, _self, _parent etc.

enctype
You can use the enctype attribute to specify how the browser encodes the data

before it sends it to the server. Possible values are:

 application/x-www-form-urlencoded - This is the standard method most

forms use in simple scenarios.

 mutlipart/form-data - This is used when you want to upload binary data in

the form of files like image, word file etc.

HTML Form Controls

There are different types of form controls that you can use to collect data using HTML form:

 Text Input Controls

 Checkboxes Controls

 Radio Box Controls

 Select Box Controls

 File Select boxes

 Hidden Controls

 Clickable Buttons

 Submit and Reset Button

Text Input Controls

There are three types of text input used on forms:

• Single-line text input controls - This control is used for items that require only one

line of user input, such as search boxes or names. They are created using HTML
<input> tag.

• Password input controls - This is also a single-line text input but it masks the

character as soon as a user enters it. They are also created using HTMl <input> tag.

• Multi-line text input controls - This is used when the user is required to give details

that may be longer than a single sentence. Multi-line input controls are created using

HTML <textarea> tag.

Single-line text input controls

This control is used for items that require only one line of user input, such as search

boxes or names. They are created using HTML <input> tag. Example

Here is a basic example of a single-line text input used to take first name and last

name:
<!DOCTYPE html>

<html>

<head>

<title>Text Input Control</title>

</head>

<body>

<form >

First name: <input type="text" name="first_name" />

Last name: <input type="text" name="last_name" />

</form>

</body>

</html>

This will produce following result:

First name:

Last name:

Attributes

Following is the list of attributes for <input> tag for creating text field.

Attribute Description

type Indicates the type of input control and for text input control it will be set to text.

name Used to give a name to the control which is sent to the server to be recognized
and get the value.

value

This can be used to provide an initial value inside the control.

size

Allows to specify the width of the text-input control in terms of characters.

maxlength Allows to specify the maximum number of characters a user can enter into the
text box.

Password input controls

This is also a single-line text input but it masks the character as soon as a user enters it.
They are also created using HTML <input> tag but type attribute is set to password.

Example

Here is a basic example of a single-line password input used to take user password:

<!DOCTYPE html>

<html>

<head>

<title>Password Input Control</title>

</head>

<body>

<form >

User ID : <input type="text" name="user_id" />

Password: <input type="password" name="password" />

</form>

</body>

</html>

This will produce following result:

UserID:

Password

Attributes

Following is the list of attributes for <input> tag for creating password field.

Attribute Description

type

Indicates the type of input control and for password input control it will be set
to password.

name

Used to give a name to the control which is sent to the server to be
recognized and get the value.

value

This can be used to provide an initial value inside the control.

size

Allows to specify the width of the text-input control in terms of characters.

maxlength Allows to specify the maximum number of characters a user can enter into the
text box.

Multiple-Line Text Input Controls

This is used when the user is required to give details that may be longer than a single

sentence. Multi-line input controls are created using HTML <textarea> tag.

Example

Here is a basic example of a multi-line text input used to take item description:
<!DOCTYPE html>

<html>

<head>

<title>Multiple-Line Input Control</title>

</head>

<body>

<form>

Description :

<textarea rows="5" cols="50" name="description"> Enter description

here...

Description :

</textarea>

</form>

</body>

</html>

This will produce following result:

Attributes

Following is the list of attributes for <textarea> tag.

Attribute Description

name Used to give a name to the control which is sent to the server to be recognized
and get the value.

rows

Indicates the number of rows of text area box.

cols Indicates the number of columns of text area box

Checkbox Control

Checkboxes are used when more than one option is required to be selected. They are
also created using HTML <input> tag but type attribute is set to checkbox. Example

Here is an example HTML code for a form with two checkboxes: <!DOCTYPE html>
<html>

<head>

<title>Checkbox Control</title>

</head>

<body>

<form>

<input type="checkbox" name="maths" value="on"> Maths

<input type="checkbox" name="physics" value="on"> Physics

</form>

</body>

</html>

This will produce following result:

Maths Physics

Attributes

Following is the list of attributes for <checkbox> tag.

Attribute Description

type

Indicates the type of input control and for checkbox input control it will be set to
checkbox.

name

Used to give a name to the control which is sent to the server to be recognized
and get the value.

value

The value that will be used if the checkbox is selected.

checked

Set to checked if you want to select it by default.

Radio Button Control

Radio buttons are used when out of many options, just one option is required to be
selected. They are also created using HTML <input> tag but type attribute is set to radio.

Example

Here is example HTML code for a form with two radio buttons:
<!DOCTYPE html>

<html>

<head>

<title>Radio Box Control</title>

</head>

<body>

<form>

<input type="radio" name="subject" value="maths"> Maths

<input type="radio" name="subject" value="physics"> Physics </form>

</body>

</html>

This will produce following result:

Maths Physics

Attributes

Following is the list of attributes for radio button.

Attribute Description

type

Indicates the type of input control and for checkbox input control it will be set
to radio.

name

Used to give a name to the control which is sent to the server to be
recognized and get the value.

value The value that will be used if the radio box is selected.

checked

Set to checked if you want to select it by default.

Select Box Control

A select box, also called drop down box which provides option to list down various

options in the form of drop down list, from where a user can select one or more options.

Example

Here is example HTML code for a form with one drop down box
<!DOCTYPE html>

<html>

<head>

<title>Select Box Control</title>

</head>

<body>

<form>

<select name="dropdown">

Maths

<option value="Maths" selected>Maths</option>

<option value="Physics">Physics</option>

</select>

</form>

</body>

</html>

This will produce following result:

Attributes

Following is the list of important attributes of <select> tag:

Attribute Description

name
Used to give a name to the control which is
sent to the server to be recognized and get
the value.

size

This can be used to present a scrolling list
box.

multiple

If set to "multiple" then allows a user to select
multiple items from the menu.

Following is the list of important attributes of <option> tag:

Attribute Description

value

The value that will be used if an option in the
select box is selected.

selected

Specifies that this option should be the
initially selected value when the page loads.

label

An alternative way of labeling options

File Upload Box

If a file is be uploaded to a web site ,use a file upload box which is also known as file

select box. This is also created using the <input> element but type attribute is set to file.

Example

Here is example HTML code for a form with one file upload box:
<!DOCTYPE html>

<html>

<head>

<title>File Upload Box</title>

</head>

<body>

<form>

<input type="file" name="fileupload" accept="image/*" /></form>

</body>

</html>

This will produce following result:

Attributes

Following is the list of important attributes of file upload box:

Attribute

Description

name

Used to give a name to the control which is sent to the
server to be recognized and get the value.

accept

Specifies the types of files that the server accepts.

Button Controls

There are various ways in HTML to create clickable buttons. It is also possible to create

a clickable button using <input> tag by setting its type attribute to button. The type attribute can

take the following values:

Type Description

submit This creates a button that automatically submits a form.

reset This creates a button that automatically resets form controls to their initial

values.

button This creates a button that is used to trigger a client-side script when the user

clicks that button.

image This creates a clickable button but we can use an image as background of

the button.

Example

Here is example HTML code for a form with three types of buttons:
<!DOCTYPE html>

<html>

<head>

<title>File Upload Box</title>

</head>

<body>

<form>

<input type="submit" name="submit" value="Submit" />

<input type="reset" name="reset" value="Reset" />

<input type="button" name="ok" value="OK" /><input type="image"

name="imagebutton" src="/html/images/logo.png" />

</form>

</body>

</html>

This will produce following result:

Hidden Form Controls

Hidden form controls are used to hide data inside the page which later on can be pushed

to the server. This control hides inside the code and does not appear on the actual page. For

example, following hidden form is being used to keep current page number. When a user will

click next page then the value of hidden control will be sent to the web server and there it will

decide which page has be displayed next based on the passed current page.

Example

Here is example HTML code to show the usage of hidden control:
<!DOCTYPE html>

<html>

<head>

<title>File Upload Box</title>

</head>

<body>

<form>

<p>This is page 10</p>

<input type="hidden" name="pagename" value="10" />

<input type="submit" name="submit" value="Submit" />

<input type="reset" name="reset" value="Reset" />

</form>

</body>

</html>

This will produce following result: This is page

10

Submit Reset

Submit Reset

COLGROUP

HTML <colgroup> tag is used for specifying properties for a group of columns within a

table. Different properties can be applied to a column within a colgroup using the HTML col tag

within the colgroup tag.

Example

<!DOCTYPE html>

<html>

<head>

<title>HTML colgroup Tag</title>

</head>

<body>

<p>This example shows a colgroup that has three columns of different widths:</p><table

border="1">

<colgroup span="3">

<col width="50"></col>

<col width="100"></col>

<col width="200"></col>

</colgroup>

<tr>

<td>col 1</td>

<td>col 2</td>

<td>col 3</td>

</tr>

</table>

</body>

</html>

This will produce following result:

This example shows a colgroup that has three columns of different widths:

col 1 col 2 col 3

HTML <tbody>,</thead>&<footer>

The HTML <tbody> tag is used in adding a body to a table. The tbody tag is used in

conjunction with the thead tag and the tfoot tag in determining each part of the table (header,

footer, body).

Example

<!DOCTYPE html>

<html>

<head>

<title>HTML tbody Tag</title>

</head>

<body>

<table style="width:100%" border="1">

<thead>

<tr>

<td colspan="4">This is the head of the table</td>

</tr>

</thead><tfoot><tr>

<td colspan="4">This is the foot of the table</td></tr>

</tfoot>

<tbody>

<tr>

<td>Cell 1</td>

<td>Cell 2</td>

<td>Cell 3</td>

<td>Cell 4</td>

</tr>

<tr>

...more rows here containing four cells...

</tr></tbody>

<tbody>

<tr>

<td>Cell 1</td>

<td>Cell 2</td>

<td>Cell 3</td>

<td>Cell 4</td>

</tr>

<tr>

...more rows here containing four cells...

</tr>

</tbody>

</table>

</body>

</html>

This will produce following result:

...more rows here containing four cells... ...more rows here containing four cells...

This is the head of the table

This is the foot of the table

<iframe>

An inline frame can be defined with HTML tag <iframe>.The <iframe> tag is not

somehow related to <frameset> tag, instead, it can appear anywhere in the document. The

<iframe> tag defines a rectangular region within the document in which the browser can display

a separate document, including scrollbars and borders. The src attribute is used to specify the

URL of the document that occupies the inline frame.

Example

Following is the example to show how to use the <iframe>:

<!DOCTYPE html>

<html>

<head>

<title>HTML Iframes</title>

</head>

<body>

<p>Document content goes here...</p>

<iframesrc="/html/menu.htm"width="555"height="200"> Sorry your browser does not support

inline frames.

</iframe>

<p>Document content also go here...</p>

</body>

</html>

This will produce following result:

Document content goes here...

Google

Microsoft

BBC News

Document content can also go here...

 The <Iframe> Tag Attributes

Most of the attributes of the <iframe> tag, including name, class, frameborder, id,

longdesc, marginheight, marginwidth, name, scrolling, style, and title behave exactly like the

corresponding attributes for the <frame> tag.

Attribute Description

src This attribute is used to give the file name that should be loaded in the frame. Its
value can be any URL. For example, src="/html/top_frame.htm" will load an
HTML file avalaible in html directory.

name This attribute allows you to give a name to a frame. It is used to indicate which
frame a document should be loaded into. This is especially important when you
want to create links in one frame that load pages into an another frame, in which
case the second frame needs a name to identify itself as the target of the link.

frameborder This attribute specifies whether or not the borders of that frame are shown; it
overrides the value given in the frameborder attribute on the <frameset> tag if
one is given, and this can take values either 1 (yes) or 0 (no).

marginwidth This attribute allows you to specify the width of the space between the left and
right of the frame's borders and the frame's content. The value is given in pixels.
For example marginwidth="10".

marginheight This attribute allows you to specify the height of the space between the top and
bottom of the frame's borders and its contents. The value is given in pixels.
For example marginheight="10".

https://www.google.com/
https://www.microsoft.com/
https://www.microsoft.com/
https://news.bbc.co.uk/

noresize By default you can resize any frame by clicking and dragging on the borders of
a frame. The noresize attribute prevents a user from being able to resize the
frame. For example noresize="noresize".

scrolling This attribute controls the appearance of the scrollbars that appear on the
frame. This takes values either "yes", "no" or "auto". For example scrolling="no"
means it should not have scroll bars.

longdesc This attribute allows you to provide a link to another page containing a long
description of the contents of the frame. For example
longdesc="framedescription.htm"

 Cascading Style Sheets (CSS)

Cascading Style Sheets (CSS) describe how documents are presented on screens, in

print, or perhaps how they are pronounced.

Cascading Style Sheets (CSS) provide easy and effective alternatives to specify various

attributes for the HTML tags. Using CSS, a number of style properties for a given HTML

element can be specified. Each property has a name and a value, separated by a colon (:).

Each property declaration is separated by a semi-colon (;).

Example

First , consider an example of HTML document which makes use of tag and associated

attributes to specify text color and font size:

<!DOCTYPE html>

<html>

<head>

<title>HTML CSS</title>

</head>

<body>

<p>Hello, World!</p>

</body>

</html>

We can re-write above example with the help of Style Sheet as follows:

<!DOCTYPE html>

<html>

<head>

<title>HTML CSS</title>

</head>

<body>

<p style="color:green;font-size:24px;">Hello, World!</p></body>

</html>

This will produce following result:

Hello, World!

CSS can be used in three ways in a HTML document:

 External Style Sheet - Define style sheet rules in a separate .css file and then include

that file in the HTML document using HTML <link> tag.

 Internal Style Sheet - Define style sheet rules in header section of the HTML document

using <style> tag.

 Inline Style Sheet - Define style sheet rules directly along-with the HTML elements
using style attribute.

Let's see all the three cases one by one with the help of suitable examples.

External Style Sheet

If a style sheet is to be used to various pages, then it is always recommended to define a

common style sheet in a separate file. A cascading style sheet file will have extension as .css

and it will be included in HTML files using <link> tag.

Example

Consider we define a style sheet file style.css which has following rules:

.red{ color: red; }

.thick{ font-size:20px; }

.green{ olor:green; }

Here we defined three CSS rules which will be applicable to three different classes defined for

the HTML tags. Now let's make use of the above external CSS file in our following HTML
document:

<!DOCTYPE html>

<html>

<head>

<title>HTML External CSS</title>

<link rel="stylesheet" type="text/css" href="/html/style.css">

</head>

<body>

<p class="red">This is red</p>

<p class="thick">This is thick</p>

<p class="green">This is green</p>

<p class="thick green">This is thick and green</p>

</body>

</html>

This will produce following result:

This is red
This is thick
This is green
This is thick and green

Internal Style Sheet

If a style sheet rules is to be applied to a single document , then include those rules in

header section of the HTML document using <style> tag. Rules defined in internal style sheet

overrides the rules defined in an external CSS file.

Example

Let's re-write above example once again, but here we will write style sheet rules in the

same HTML document using <style> tag:

<!DOCTYPE html>

<html>

<head>

<title>HTML Internal CSS</title>

<style type="text/css">

.red{

color: red;

}

.thick{

font-size:20px;

}

.green{

color:green;

}

</style>

</head>

<body>

<p class="red">This is red</p>

<p class="thick">This is thick</p>

<p class="green">This is green</p>

<p class="thick green">This is thick and green</p>

</body>

</html>

This will produce following result:

This is red
This is thick
This is green
This is thick and green

Inline Style Sheet

tyle sheet rules can be applied directly to any HTML element using style attribute of the

relevant tag. This should be done only when a particular change in any HTML element only is

required. Rules defined inline with the element overrides the rules defined in an external CSS

file as well as the rules defined in <style> element.

Example

Let's re-write above example once again, but here we will write style sheet rules along
with the HTML elements using style attribute of those elements.

<!DOCTYPE html>

<html>

<head>

<title>HTML Inline CSS</title>

</head>

<body>

<p style="color:red;">This is red</p>

<p style="font-size:20px;">This is thick</p>

<p style="color:green;">This is green</p>

<p style="color:green;font-size:20px;">This is thick and green</p>

</body>

</html>

This will produce following result:

This is red
This is thick
This is green
This is thick and green

What is CSS3?

CSS3 is the latest evolution of the Cascading Style Sheets language and aims at

extending CSS2.1. It brings a lot of long-awaited novelties, like rounded corners, shadows,

gradients, transitions or animations, as well as new layouts like multi-columns, flexible box

or grid layouts.The main difference between css2 and css3 is follows

 Media Queries

 Namespaces

 Selectors Level 3

 Color

CSS3 modules

CSS3 is collaboration of CSS2 specifications and new specifications.This collaboration
is called as module. Some of the modules are shown below

 Selectors

 Box Model

 Backgrounds

 Image Values and Replaced Content

 Text Effects

 2D Transformations

 3D Transformations

 Animations

 Multiple Column Layout

 User Interface

CSS3 - Animation

Animation is process of making shape changes and creating motions with elements.

@keyframes

Keyframes will control the intermediate animation steps in CSS3.

Example of key frames with left animation

@keyframes animation {

from {background-color: pink;}

to {background-color: green;}

}

div {

width: 100px;

height: 100px;

background-color: red;

animation-name: animation;

animation-duration: 5s;

}

The above example shows height, width, color, name and duration of animation with

keyframes syntax.

CSS3- Borders

Elements have a border that sits comfortably between the element's padding and

margin. By default the border has a size of 0 — making it invisible but the thickness, style and

color of the border can be set to make it appear.

Border shorthand

The border CSS property is a shorthand property for setting all individual border

property values at once: border-width, border-style, and border-color. As with all shorthand

properties, any individual value that is not specified is set to its corresponding initial value.

Importantly, border cannot be used to specify a custom value for border-image, but instead sets

it to its initial value, i.e., none.

Use border when you want to set all border properties simultaneously. While the border-

width, border-style, and border-color shorthand properties accept up to four values, allowing to

set different values for each edge, border only accepts a single value for each property. Thus,

the same style is applied to all four edges.

Syntax

The border property is specified using one or more of the <br-width>, <br-style>, and

<color> values listed below.

https://developer.mozilla.org/en-US/docs/Web/CSS/border-width
https://developer.mozilla.org/en-US/docs/Web/CSS/border-style
https://developer.mozilla.org/en-US/docs/Web/CSS/border-color
https://developer.mozilla.org/en-US/docs/Web/CSS/border-image
https://developer.mozilla.org/en-US/docs/Web/CSS/border-width
https://developer.mozilla.org/en-US/docs/Web/CSS/border-width
https://developer.mozilla.org/en-US/docs/Web/CSS/border-style
https://developer.mozilla.org/en-US/docs/Web/CSS/border-color

fun-border { border: 2px solid red; }

Values

<br-width> Thickness of the border. Defaults to medium if absent.

<br-style> Line style of the border. Defaults to none if absent.

<color> Color of the border. Defaults to the value of the element's color property.

Formal syntax

<br-width> || <br-style> || <color>

where

<br-width> = <length> | thin | medium | thick

<br-style> = none | hidden | dotted | dashed | solid | double | groove | ridge | inset | outset

<color> = <rgb()> | <rgba()> | <hsl()> | <hsla()> | <hex-color> | <named-color> | currentcolor |

<deprecated-system-color>

HTML

<p>You can edit the CSS below to experiment with border styles!</p>

<style content editable>

.fun-border {

border: 2px solid red;

}

</style>

CSS

style {

display: block;

border: 1px dashed black;

}

Result

You can edit the CSS below to experiment with border styles!

CSS3 Backgrounds

The background of an element is the area that sits underneath an element's content,

padding, and border. By default this is the case anyway — in newer browsers, the area that the

background takes up can be altered using the background-clip property.

https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
https://developer.mozilla.org/en-US/docs/Web/CSS/color
https://developer.mozilla.org/en-US/docs/CSS/Value_definition_syntax#Single_bar
https://developer.mozilla.org/en-US/docs/CSS/Value_definition_syntax#Single_bar
https://developer.mozilla.org/en-US/docs/CSS/Value_definition_syntax#Single_bar
https://developer.mozilla.org/en-US/docs/CSS/Value_definition_syntax#Single_bar
https://developer.mozilla.org/en-US/docs/CSS/Value_definition_syntax#Single_bar
https://developer.mozilla.org/en-US/docs/CSS/Value_definition_syntax#Single_bar
https://developer.mozilla.org/en-US/docs/CSS/Value_definition_syntax#Single_bar
https://developer.mozilla.org/en-US/docs/CSS/Value_definition_syntax#Single_bar
https://developer.mozilla.org/en-US/docs/CSS/Value_definition_syntax#Single_bar
https://developer.mozilla.org/en-US/docs/CSS/Value_definition_syntax#Single_bar
https://developer.mozilla.org/en-US/docs/CSS/Value_definition_syntax#Single_bar
https://developer.mozilla.org/en-US/docs/CSS/Value_definition_syntax#Single_bar
https://developer.mozilla.org/en-US/docs/CSS/Value_definition_syntax#Single_bar
https://developer.mozilla.org/en-US/docs/CSS/Value_definition_syntax#Single_bar
https://developer.mozilla.org/en-US/docs/CSS/Value_definition_syntax#Single_bar
https://developer.mozilla.org/en-US/docs/CSS/Value_definition_syntax#Single_bar
https://developer.mozilla.org/en-US/docs/CSS/Value_definition_syntax#Single_bar
https://developer.mozilla.org/en-US/docs/CSS/Value_definition_syntax#Single_bar
https://developer.mozilla.org/en-US/docs/CSS/Value_definition_syntax#Single_bar
https://developer.mozilla.org/en-US/docs/Web/CSS/background-clip

Exciting box!

There are many other different properties used to manipulate the element's background.

 background-color: Sets a solid color for the background.

 background-image: Specifies a background image to appear in the background of the
element. This can be a static file, or a generated gradient.

 background-position: Specifies the position that the background should appear inside the
element background.

 background-repeat: Specifies whether the background should be repeated (tiled) or not.

 background-attachment: Specifies the behaviour of an element's background when its
content scrolls, e.g. does it scroll with the content, or is it fixed?

 background: Shorthand for specifying the above five properties on one line.

 background-size: Allows a background image to be resized dynamically.

Background color

Use the background-color property. The default background color of most elements is

not white but transparent .Therefore to set an element's background color to something

interesting, it must be set explicitly.

In addition, it is important to set a background color as a fallback. Background colors are

supported pretty much everywhere, whereas more exotic features such as background

gradients are supported only in newer browsers, plus a background image might fail to load for

some reason. It is therefore a good idea to set a basic background color as well as specifying

such features, so the element's content is readable no matter what.

Example

<p>Exciting box!</p>

Let's give it a background color:

p {

font-family: sans-serif;

padding: 20px;

/* background properties */

background-color: yellow;

}

The result is as follows:

https://developer.mozilla.org/en-US/docs/Web/CSS/background-color
https://developer.mozilla.org/en-US/docs/Web/CSS/background-image
https://developer.mozilla.org/en-US/docs/Web/CSS/background-position
https://developer.mozilla.org/en-US/docs/Web/CSS/background-repeat
https://developer.mozilla.org/en-US/docs/Web/CSS/background-attachment
https://developer.mozilla.org/en-US/docs/Web/CSS/background
https://developer.mozilla.org/en-US/docs/Web/CSS/background-size
https://developer.mozilla.org/en-US/docs/Web/CSS/background-color

Background image

The background-image property specifies a background image to display in the

background of an element. The simplest usage of this property involves using the url() function

— which takes the path to an image as a parameter — to fetch a static image file to insert.

Example

p {

font-family: sans-serif;

padding: 20px;

/* background properties */

background-color: yellow;

background-image: url(https://mdn.mozillademos.org/files/13026/fire-ball-icon.png);

}

One important thing to bear in mind is that since background images are set using CSS

and appear in the background of content, they will be invisible to assistive technologies like

screen readers. They are not content images — they are just for decoration — if an image is to

included in a web page that is part of the content, then it should be done with an

element.

Background repeat

Background-repeat allows to specify how the background image is repeated. The

default value is repeat which makes the image keep repeating until the whole element

background is filled.

Other common and widely supported values are

 no-repeat: The image will not repeat at all: it will only be shown once.

 repeat-x: The image will repeat horizontally all the way across the background.

 repeat-y: The image will repeat vertically all the way down the background.

Example

p {

font-family: sans-serif;

padding: 20px;

/* background properties */

background-color: yellow;

background-image: url(https://mdn.mozillademos.org/files/13026/fire-ball-icon.png);

background-repeat: no-repeat; }

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://developer.mozilla.org/en-US/docs/Web/CSS/background-repeat

Background position

Background-position allows us to position our background image wherever we want

inside the background. Generally the property will take two values, separated by a space, which

specify the horizontal (x) and vertical (y) coordinates of the image — the top left corner of the

image, to be exact. Think of the background as a graph, with the x coordinate going across from

left to right, and the y coordinate going from top to bottom.

The property can accept many different value types

 Absolute values like pixels — for example background-position: 200px 25px.

 Relative values like rems — for example background-position: 20rem 2.5rem.

 Percentages — for example background-position: 90% 25%.

 Keywords — for example background-position: right center. These two values are
intuitive, and can take values of left, center, right, and top, center, bottom, respectively.

The values can be mixed and matched - for example background-position: 99% center. Also

note that if one value is specified, that value will be assumed to be the horizontal value, and the

vertical value will default to center.

Example:

p {

font-family: sans-serif;

padding: 20px;

/* background properties */

background-color: yellow;

background-image: url(https://mdn.mozillademos.org/files/13026/fire-ball-icon.png);

background-repeat: no-repeat;

background-position: 99% center;

}

CSS3 - Web fonts

Web fonts are used to allows the fonts in CSS, which are not installed on local system.

Different web fonts formats

Fonts Description

TrueType Fonts (TTF)

TrueType is an outline font standard developed by Apple and Microsoft
in the late 1980s, It became most common fonts for both windows and
MAC operating systems

OpenType Fonts
(OTF)

OpenType is a format for scalable computer fonts and developed by
Microsoft

https://developer.mozilla.org/en-US/docs/Web/CSS/background-position

The Web Open Font
Format (WOFF)

WOFF is used for develop web page and developed in the year of 2009.
Now it is using by W3C recommendation.

SVG Fonts/Shapes
SVG allow SVG fonts within SVG documentation. We can also apply
CSS to SVG with font face property

Embedded OpenType
Fonts (EOT)

EOT is used to develop the web pages and it has embedded in
webpages so no need to allow 3rd party fonts

following code shows the sample code of font face

<html>

<head>

<style>

@font-face {

font-family: myFirstFont;

src: url(/css/font/SansationLight.woff);

}

div {

font-family: myFirstFont;

}

</Style>

</head>

<body>

<div>This is the example of font face with CSS3.</div>

<p>Original Text :This is the example of font face with CSS3.</p>

</body>

</html>

It will produce the following result –

This is the example of font face with CSS3.

Original Text : This is the example of font face with CSS3.

Fonts description

The following list contained all the fonts description which are placed in the @font-face rule −

Values Description

font-family Used to defines the name of font

src Used to defines the URL

font-stretch Used to find, how font should be stretched

font-style Used to defines the fonts style

font-weight Used to defines the font weight(boldness)

CSS3 - Multi columns

CSS3 supported multi columns to arrange the text as news paper structure.Some of

most common used multi columns properties as shown below −

Values Description

column-count Used to count the number of columns that element should be divided

column-fill Used to decide, how to fill the columns

column-gap Used to decide the gap between the columns

column-rule Used to specifies the number of rules

rule-color Used to specifies the column rule color

rule-style Used to specifies the style rule for column

rule-width Used to specifies the width

column-span Used to specifies the span between columns

Example

Below example shows the arrangement of text as news paper structure.

<html>

<head>

<style>

.multi {

/* Column count property */

-webkit-column-count: 4;

-moz-column-count: 4;

column-count: 4;

/* Column gap property */

-webkit-column-gap: 40px;

-moz-column-gap: 40px;

column-gap: 40px;

/* Column style property */

-webkit-column-rule-style: solid;

-moz-column-rule-style: solid;

column-rule-style: solid;

}

</style>

</head>

<body>

<div class="multi">

Tutorials Point originated from the idea that there exists a class of readers who respond

better to online content and prefer to learn new skills at their own pace from the comforts of

their drawing rooms. The journey commenced with a single tutorial on HTML in 2006 and elated

by the response it generated, we worked our way to adding fresh tutorials to our repository

which now proudly flaunts a wealth of tutorials and allied articles on topics ranging from

programming languages to web designing to academics and much more.

</div>

</body>

</html>

If user wants to make text as new paper without line, it can be done as shown below.

.multi {
/* Column count property */
-webkit-column-count: 4;
-moz-column-count: 4;
column-count: 4;
/* Column gap property */
-webkit-column-gap: 40px;
-moz-column-gap: 40px;
column-gap: 40px;

}

It will produce the following result −
Tutorials Point
originated from
the idea that there
exists a class of
readers who
respond better to
online content and
prefer to learn
new skills at their

own pace from
the comforts of
their drawing
rooms. The
journey
commenced with
a single tutorial on
HTML in 2006
and elated by the

response it
generated, we
worked our way to
adding fresh
tutorials to our
repository which
now proudly
flaunts a wealth of
tutorials and allied

articles on topics
ranging from
programming
languages to web
designing to
academics and
much more

This is some long text that

This is some long text that….

CSS3 - Text

CSS3 contains several extra features.

 text-overflow

 word-wrap

 word-break

The most commonly used property in CSS3

Values Description

text-align-last Used to align the last line of the text

text-emphasis Used to emphasis text and color

text-overflow used to determines how overflowed content that is not displayed is

signaled to users

word-break Used to break the line based on word

word-wrap Used to break the line and wrap onto next line

CSS3 Text Overflow

The CSS3 text-overflow property specifies how overflowed content that is not

displayed should be signaled to the user.It can be clipped.

or it can be rendered as an ellipsis (...):

The CSS code is as follows:

Example

p.test1 {

white-space: nowrap;

width: 200px;

border: 1px solid #000000;

overflow: hidden;

text-overflow: clip;

}

p.test2 {

white-space: nowrap;

width: 200px;

border: 1px solid #000000;

overflow: hidden;

text-overflow: ellipsis;

}

The following example shows how the overflowed content can be displayed when

hovering over the element:

Example

div.test:hover {

text-overflow: inherit;

overflow: visible;

}

CSS3 Word Wrapping

The CSS3 word-wrap property allows long words to be able to be broken and wrap

onto the next line.

If a word is too long to fit within an area, it expands outside:

This paragraph
contains a very long

word:

thisisaveryveryveryveryveryverylongword.

The long word will

break and wrap to

the next line.

The word-wrap property allows to force the text to wrap - even if it means splitting it

in the middle of a word:

This paragraph
contains a very long

word: thisisaveryveryve

ryveryveryverylongword.

The long word will

break and wrap to

the next line.

The CSS code is as follows:

Example

Allow long words to be able to be broken and wrap onto the next line:

p {

word-wrap: break-word;

}

CSS3 Word Breaking

The CSS3 word-break property specifies line breaking rules.

This paragraph
contains some
text. This line
will-break-at-hyphens.

This paragraph co
ntains some text. The lines will break
at any character.

The CSS code is as follows:

Example

p.test1 {

word-break: keep-all;

}

p.test2 {

word-break: break-all;

}

 Formatting Text and Fonts

The CSS font properties define the font family, boldness, size, and the style of a text.

CSS Font Families

In CSS, there are two types of font family names:

 generic family - a group of font families with a similar look (like "Serif" or

"Monospace")

font family - a specific font family (like "Times New Roman" or "Arial")

Generic family Font family Description

Serif Times New Roman

Georgia

Serif fonts have small lines at the ends on

some characters

Sans-serif Arial

Verdana

"Sans" means without - these fonts do not

have the lines at the ends of characters

Monospace Courier New

Lucida Console

All monospace characters have the same

width

Font Family

The font family of a text is set with the font-family property.The font-family property

should hold several font names as a "fallback" system. If the browser does not support the

first font, it tries the next font, and so on. If the name of a font family is more than one word,

it must be in quotation marks, like: "Times New Roman".More than one font family is

specified in a comma-separated list.

Example

p {

font-family: "Times New Roman", Times, serif;

}

Font Style

The font-style property is mostly used to specify italic text.

This property has three values:

 normal - The text is shown normally

 italic - The text is shown in italics

 oblique - The text is "leaning" (oblique is very similar to italic, but less supported)

Example

p.normal {

font-style: normal;

}

p.italic {

font-style: italic;

}

p.oblique {

font-style: oblique;

}

Font Size

The font-size property sets the size of the text.Being able to manage the text size is

important in web design. However, font size adjustments should not be used to make

paragraphs look like headings, or headings look like paragraphs. The font-size value can be

an absolute or relative size.

Absolute size:

 Sets the text to a specified size

 Does not allow a user to change the text size in all browsers (bad for accessibility

reasons)

 Absolute size is useful when the physical size of the output is known

Relative size:

 Sets the size relative to surrounding elements

 Allows a user to change the text size in browsers

Set Font Size With Pixels

Setting the text size with pixels gives full control over the text size.

Example

h1 {

font-size: 40px;

}

h2 {

font-size: 30px;

}

p {

font-size: 14px;

}

Set Font Size With Em

To allow users to resize the text (in the browser menu), many developers use em

instead of pixels. 1em is equal to the current font size. The default text size in browsers is

16px. So, the default size of 1em is 16px.The size can be calculated from pixels to em using

this formula: pixels/16=em

Example

h1 {

font-size: 2.5em; /* 40px/16=2.5em */

}

h2 {

font-size: 1.875em; /* 30px/16=1.875em */

}

p {

font-size: 0.875em; /* 14px/16=0.875em */

}

In the example above, the text size in em which is the same as the one in pixels.

However, with the em size, it is possible to adjust the text size in all browsers.

Font Weight

The font-weight property specifies the weight of a font:

Example

p.normal {

font-weight: normal;

}

p.thick {

font-weight: bold;

}

Font Variant

The font-variant property specifies whether or not a text should be displayed in a

small-caps font. In a small-caps font, all lowercase letters are converted to uppercase letters.

However, the converted uppercase letters appears in a smaller font size than the original

uppercase letters in the text.

Example

p.normal {

font-variant: normal;

}

p.small {

font-variant: small-caps;

}

Text Indentation

The text-indent property is used to set the indentation of the first line of text of an

element. Possible values for the text-indent property are: percentage (%), length

(specifying indent space) or inherit.

The following example demonstrates how to indent the first line of a paragraph.

p {

text-indent: 100px;

}

Word Spacing

The word-spacing property used to sets the spacing between the words.

 Word spacing can be affected by text justification. The text-align property is used.

 When whitespace is preserved all space characters are affected by the word
spacing. The CSS white-space property is used.

Possible values for the word-spacing property are: length (specifying the space to be
inserted between words), normal and inherit.

Example

p.one {

word-spacing: 20px;

}

p.two {

word-spacing: 20px;

text-align: justify;

}

p.three {

word-spacing: 20px;

white-space: pre;

}

Letter Spacing

The letter-spacing property is used to set extra spacing between the characters of

text.Possible values for this property are: length (specifying the extra space to be inserted

between characters in addition to the default inter-character space), normal and inherit.

Example

h1 {
letter-spacing: -3px;

}
p {

letter-spacing: 10px;
}

Line Height

The line-height property defines height (also called leading) of a line of text.Possible

values for this property are: percentage (%), length, number, normal and inherit.

https://www.tutorialrepublic.com/css-reference/css-text-align-property.php
https://www.tutorialrepublic.com/definitions.php#inherit

Example

p {

line-height: 1.2;

}

When the value is a number, the line height is calculated by multiplying the element's

font size by the number. While, percentage values are relative to the element's font size. If

the value of the line-height property is greater than the value of the font-size for an element,

this difference (called the "leading") is cut in half (called the "half-leading") and distributed

evenly on the top and bottom of the in-line box.

Example

p {

font-size: 14px;

line-height: 20px;

background-color: #f0e68c;

}

Property Values

The following table describes the values of the property used with font.

Value Description

font-style Sets the font style.

font-variant Sets the font variant.

font-weight Sets the font weight.

font-size Sets the font size.

line-height Sets the line height.

font-family Specifies the font family.

initial Sets this property to its default value.

inherit If specified, the associated element takes the computed value of its

parent element font property.

1.1.1.13.1.1 And the following values refer to system fonts:

caption The font used for captioned controls (e.g., buttons, drop-downs, etc.).

icon The font used to label icons.

menu The font used in menus (e.g., dropdown menus and menu lists).

message-box The font used in dialog boxes.

small-caption The font used for labeling small controls.

status-bar The font used in window status bars.

https://www.tutorialrepublic.com/css-reference/css-font-style-property.php
https://www.tutorialrepublic.com/css-reference/css-font-variant-property.php
https://www.tutorialrepublic.com/css-reference/css-font-weight-property.php
https://www.tutorialrepublic.com/css-reference/css-font-size-property.php
https://www.tutorialrepublic.com/css-reference/css-line-height-property.php
https://www.tutorialrepublic.com/css-reference/css-font-family-property.php
https://www.tutorialrepublic.com/definitions.php#computed-value

CSS Colors

Colors in CSS are most often specified by:

 a valid color name - like "red"

 an RGB value - like "rgb(255, 0, 0)"

 a HEX value - like "#ff0000"

Setting Color Property

The color property typically defines the color of the text content of an element. For instance,

the color property specified in the body selector defines the default text color (foreground

color in general) for the whole page.

Example

body {

color: #000000;

}

Color Names

Colors set by using color names:

Example

Color Name

 Red

 Green

 Blue

 Orange

 Yellow

 Cyan

Black

RGB (Red, Green, Blue)

RGB color values can be specified using this formula: rgb(red, green, blue).Each

parameter (red, green, blue) defines the intensity of the color between 0 and 255.For

example, rgb(255,0,0) is displayed as red, because red is set to its highest value (255) and

the others are set to 0.

Example

Color RGB

 rgb(255,0,0)

 rgb(0,255,0)

 rgb(0,0,255)

 rgb(255,165,0)

 rgb(255,255,0)

 rgb(0,255,255)

Shades of grey are often defined using equal values for all the 3 light sources:

Example

Color RGB

 rgb(0,0,0)

 rgb(128,128,128)

 rgb(255,255,255)

Hexadecimal Colors

RGB values can also be specified using hexadecimal color values in the form:

#RRGGBB, where RR (red), GG (green) and BB (blue) are hexadecimal values between 00

and FF (same as decimal 0-255).

For example, #FF0000 is displayed as red, because red is set to its highest value

(FF) and the others are set to the lowest value (00). Note: HEX values are case-insensitive.

"#ff0000" is the same as "FF0000".

Example

Color HEX

#FF0000

 #00FF00

 #0000FF

 #FFA500

 #FFFF00

 #00FFFF

CSS Background

Background properties are used to define background styles for the elements.

Background Properties

The CSS provide several properties for styling the background of an element, like:

background-color, background-image, background-repeat, background-attachment and

background-position.

Background Color

The background-color property is used to set the background color of an

element.The background color of a page is set like this:

Example

body {

background-color: lightblue;

}

With CSS, a color is most often specified by:

 a valid color name - like "red"

 a HEX value - like "#ff0000"

 an RGB value - like "rgb(255,0,0)"

In the example below, the <h1>, <p>, and <div> elements have different background
colors:

Example

h1 {
background-color: green;

}

div {
background-color: lightblue;

}

p {
background-color: yellow;

}

Background Image

The background-image property set an image as a background of an HTML element.

By default, the image is repeated so it covers the entire element.

Example

body {
background-image: url("paper.gif");

}

Background Repeat

By default the background-image property repeats an image both horizontally and

vertically.

By using background-repeat property tilting of background image can be controlled

for a background of an html element. The background image can be set to repeat vertically

(y-axis), horizontally (x-axis), in both directions, or in neither direction. The example below

which demonstrates how to set the gradient background for a web page by repeating the

sliced image horizontally.

body {

background-image: url("gradient.png");

background-repeat: repeat-x;

}

Background Attachment

The background-attachment property determines whether the background image is

fixed with regard to the viewport or scrolls along with the containing block.

Example

body {

width: 250px;

height: 200px;

overflow: scroll;

background-image: url("recycle.jpg");

background-attachment: fixed;

}

Background Position

The background-position property is used to control the position of the background

image.If no background-position has been specified, the image is placed at the default top-

left position of the element i.e. at (0,0).

Example

body {

background-image: url("tree.png");

background-repeat: no-repeat;

}

In the following example, the background image is positioned at top-right corner and

the position of the image is specified by the background-position property.

Example
body {

background-image: url("tree.png");

background-repeat: no-repeat;

background-position: 100% top;

}

The Background Shorthand Property

There are many properties to consider when dealing with the backgrounds. It is also

possible to specify all these properties in one single property, to shorten the code. This is

called a shorthand property.

The background property is a shorthand property for setting all the individual

background properties (i.e., background-color, background-image, background-repeat,
background-attachment and background-position) at once. For example:

body {

background-color: #f0e68c;

background-image: url("smiley.png");

background-repeat: no-repeat;

background-attachment: fixed;

background-position: 250px 25px;

}

Using the shorthand notation the above example can be written as:

body {

background: #f0e68c url("smiley.png") no-repeat fixed 250px 25px;

}

When using the background shorthand property the order of the property values should be.

background: color image repeat attachment position;

If the value for an individual background property is missing or not specified while

using the shorthand notation, the default value for that property will be used instead, if any.

The background properties do not inherit, but the parent element's background will

be visible through by default because of the initial (i.e. default) transparent value of the

background CSS property.

 Exploring CSS Class and ID Attributes:

Defining CSS Class attribute

A CSS comprises of style rules that are interpreted by the browser and then applied

to the corresponding elements in a document. A style rule is made of three parts −

Selector − A selector is an HTML tag at which a style will be applied. This could be any tag

like <h1> or <table> etc.

Property - A property is a type of attribute of HTML tag. Put simply, all the HTML attributes

are converted into CSS properties. They could be color, border etc.

Value - Values are assigned to properties.

For example, color property can have value either red or #F1F1F1 etc. CSS Style

Rule Syntax can be as follows − selector { property: value }

Example:

A table border can be defined as follows −table{ border :1px solid #C00; } Here table

is a selector and border is a property and given value 1px solid #C00 is the value of that

property.

Selectors can be defined in various simple ways based on comfort.

The Type Selectors

This is the same selector we have seen above. Again, one more example to give a

color to all level 1 headings:

h1 {

color: #36CFFF;

}

The Universal Selectors

Rather than selecting elements of a specific type, the universal selector quite simply

matches the name of any element type −

* {
color: #000000;

}
This rule renders the content of every element in our document in black.

The Descendant Selectors

A style rule can be applied to a particular element only when it lies inside a particular

element. As given in the following example, style rule will apply to element only when

it lies inside tag. ul em {

color: #000000;

}
The Class Selectors

The style rules can be defined based on the class attribute of the elements. All the

elements having that class will be formatted according to the defined rule.

.black {

color: #000000;

}

This rule renders the content in black for every element with class attribute set to

black in our document. You can make it a bit more particular. For example:

h1.black {

color:

#000000;

}

This rule renders the content in black for only <h1> elements with class attribute set

to black. More than one class selectors can be applied to a given element.

Consider the following example:

<p class="center bold">

This para will be styled by the classes center and bold. </p>

The ID Selectors

Style rules can be defined based on the id attribute of the elements. All the elements

having that id will be formatted according to the defined rule.

#black {

color: #000000;

}

This rule renders the content in black for every element with id attribute set to black

in our document. You can make it a bit more particular. For example − h1#black { color:

#000000;

}

This rule renders the content in black for only <h1> elements with id attribute set to

black. The true power of id selectors is when they are used as the foundation for descendant

selectors, For example:

#black h2 {

color:

#000000;

}

In this example all level 2 headings will be displayed in black color when those

headings will lie with in tags having id attribute set to black.

The Child Selectors

descendant selectors is one more type of selector, which is very similar to

descendants but have different functionality. Consider the following example − body > p {

color: #000000;

}

This rule will render all the paragraphs in black if they are direct child of <body>

element. Other paragraphs put inside other elements like <div> or <td> would not have any

effect of this rule.

The Attribute Selectors

Styles can be applied to HTML elements with particular attributes. The style rule

below will match all the input elements having a type attribute with a value of

text − input[type = "text"]{ color: #000000;
}
The advantage to this method is that the <input type = "submit" /> element is
unaffected, and the color applied only to the desired text fields.

There are following rules applied to attribute selector.

p[lang] - Selects all paragraph elements with a lang attribute.

p[lang="fr"] - Selects all paragraph elements whose lang attribute has a value of exactly

"fr".

p[lang~="fr"] - Selects all paragraph elements whose lang attribute contains the word "fr".

p[lang|="en"] - Selects all paragraph elements whose lang attribute contains values that

are exactly "en", or begin with "en-".

Multiple Style Rules

Multiple style rules for a single element can be defined. These rules are defined to combine

multiple properties and corresponding values into a single block as defined in the following

example − h1 { color: #36C; font-weight: normal; letter-spacing: .4em; margin-

bottom: 1em; text-transform: lowercase;

}
Here all the property and value pairs are separated by a semi colon (;).They can be

kept in a single line or multiple lines. For better readability it is kept into separate lines.

Grouping Selectors

A style can be applied to many selectors. Just separate the selectors with a comma,

as given in the following example − h1, h2, h3 { color: #36C; font-weight: normal; letter-

spacing: .4em; margin-bottom: 1em; text-transform: lowercase;

}

This defined style rule will be applicable to h1, h2 and h3 element as well. The order

of the list is irrelevant. All the elements in the selector will have the corresponding

declarations applied to them.

Various class selectors can be combined together as shown below −

#content, #footer, #supplement {
position: absolute;

left: 510px;
width: 200px;

}

Defining Effects with CSS

With CSS3 shadow can be added to text and to elements with the following properties:

 text-shadow

 box-shadow

<!DOCTYPE html>
<html>

<head><style>

h1 {

text-shadow: 2px 2px red;

}

</style>

</head>

<body>

<h1>Text-shadow effect!</h1>

<p>Note: Internet Explorer 9 and earlier versions, do not support the text-shadow

property.</p>

</body>

</html>

Multiple Shadows

To add more than one shadow to the text, you can add a comma separated list of

shadows.

h1

{

text-shadow: 0 0 3px #FF0000, 0 0 5px #0000FF;

}

CSS3 BOX-SHADOW PROPERTY

The CSS3 box-shadow property applies shadow to elements. In its simplest use, only

the horizontal shadow and the vertical shadow can be specified.

<!DOCTYPE html>

<html>

<head><style> div { width:

300px; height: 100px;

padding: 15px;

background-color: yellow;

box-shadow: 10px 10px;

}

</style>

</head>

<body>

<div>This is a div element with a box-shadow</div>

</body>

</html>

CSS Lists

In HTML, there are two main types of lists:

 unordered lists () - the list items are marked with bullets

 ordered lists () - the list items are marked with numbers or letters

The CSS list properties allow us to:

 Set different list item markers for ordered lists

 Set different list item markers for unordered lists

 Set an image as the list item marker

 Add background colors to lists and list items

Different List Item Markers

The list-style-type property specifies the type of list item marker.

The following example shows some of the available list item markers:

<!DOCTYPE html>

<html>

<head>

<style>

ul.a {

list-style-type: circle;

}

ul.b {

list-style-type: square;

}

ol.c {

list-style-type: upper-roman;

}

ol.d {

list-style-type: lower-alpha;

}

</style>

</head>

<body>

<p>Example of unordered lists:</p>

<ul class="a">

Coffee

Tea

Coca Cola

<ul class="b">

Coffee

Tea

Coca Cola

<p>Example of ordered lists:</p>

<ol class="c">

Coffee

Tea

Coca Cola

<ol class="d">

Coffee

Tea

Coca Cola

</body>

</html>

The out put is as follows

Example of unordered lists:

o Coffee
o Tea
o Coca Cola

 Coffee
 Tea
 Coca Cola

Example of ordered lists:

I. Coffee
II. Tea
III. Coca Cola

a. Coffee
b. Tea

c. Coca Cola

List - Shorthand property

The list-style property is a shorthand property. It is used to set all the list properties

in one declaration:

<!DOCTYPE html>

<html>

<head>

<style>

ul {

list-style: square inside url("sqpurple.gif");

}

</style>

</head>

<body>

Coffee

Tea

Coca Cola

</body>

</html>

The output is as follows

Coffee
Tea
Coca Cola

When using the shorthand property, the order of the property values are:

 list-style-type (if a list-style-image is specified, the value of this property will be
displayed if the image for some reason cannot be displayed)

 list-style-position (specifies whether the list-item markers should appear inside or
outside the content flow)

 list-style-image (specifies an image as the list item marker)

If one of the property values above are missing, the default value for the missing

property will be inserted, if any.

Styling List with Colors

We can also style lists with colors, to make them look a little more interesting.

Anything added to the or tag, affects the entire list, while properties added

to the tag will affect the individual list items:

<!DOCTYPE html>

<html>

<head>

<style>

ol {

background: #ff9999;

padding: 20px;

}

ul {

background: #3399ff;

padding: 20px;

}

ol li {

background: #ffe5e5;

padding: 5px;

margin-left: 35px;

}

ul li {

background: #cce5ff;

margin: 5px;

}

</style>

</head>

<body>

<h1>Styling Lists With Colors:</h1>

Coffee

Tea

Coca Cola

Coffee

Tea

Coca Cola

</body>

</html>

CSS Tables

The look of an HTML table can be greatly improved with CSS.

Basic CSS Table Structure

Let's make a simple 3x4 table containing columns for different food groups. Our

HTML would look something like:

<table>

<tr>

<th>One</th>

<th>Two</th>

<th>Three</th>

</tr>

<tr>

<td>Apples</td>

<td>Carrots</td>

<td>Steak</td>

</tr>

<tr>

<td>Oranges</td>

<td>Potato</td>

<td>Pork</td>

</tr>

<tr>

<td>Pears</td>

<td>Peas</td>

<td>Chicken</td>

</tr>

</table>

Within a brand new HTML document, before any resets or CSS, you'd probably have

something like this on your hands:

Table Borders

To specify table borders in CSS, use the border property. The example below

specifies a black border for <table>, <th>, and <td> elements:

Firstname Lastname

Peter Griffin

Lois Griffin

Example

table, th, td {

border: 1px solid black;

}

Notice that the table in the example above has double borders. This is because both

the table and the <th> and <td> elements have separate borders.

Collapse Table Borders

The border-collapse property sets whether the table borders should be collapsed

into a single border:

Example

<!DOCTYPE html>

<html>

<head>

<style>

table {

border-collapse: collapse;

}

table, td, th {

border: 1px solid black;

}

</style>

</head>

<body>

<h2>Let the borders collapse:</h2>

<table>

<tr>

<th>Firstname</th>

<th>Lastname</th>

</tr>

<tr>

<td>Peter</td>

<td>Griffin</td>

</tr>

<tr>

<td>Lois</td>

<td>Griffin</td>

</tr>

</table>

<p>Note: If a !DOCTYPE is not specified, the border-collapse property can produce

unexpected results

in IE8 and earlier versions.</p>

</body>

</html>

The output is as follows

Let the borders collapse:

Firstname Lastname

Peter Griffin

Lois Griffin

Note: If a !DOCTYPE is not specified, the border-collapse property can produce unexpected

results in IE8 and earlier versions.

If only a border around the table is required then, specify only the border property for

<table>:

Example

<!DOCTYPE html>

<html>

<head>

<style>

table {

border-collapse: collapse;

border: 1px solid black;

}

</style>

</head>

<body>

<h2>Single Border Around The Table:</h2>

<table>

<tr>

<th>Firstname</th>

<th>Lastname</th>

</tr>

<tr>

<td>Peter</td>

<td>Griffin</td>

</tr>

<tr>

<td>Lois</td>

<td>Griffin</td>

</tr>

</table>

</body>

</html>

The output is as follows

Single Border Around The Table:

Firstname Lastname

Peter Griffin

Lois Griffin

Table Width and Height

Width and height of a table are defined by the width and height properties.

The example below sets the width of the table to 100%, and the height of the <th>

elements to 50px:

Example

<!DOCTYPE html>

<html>

<head>

<style>

table, td, th {

border: 1px solid black;

}

table {

border-collapse: collapse;

width: 100%;

}

th {

height: 50px;

}

</style>

</head>

<body>

<h2>The width and height Properties</h2>

<p>Set the width of the table, and the height of the table header row:</p>

<table>

<tr>

<th>Firstname</th>

<th>Lastname</th>

<th>Savings</th>

</tr>

<tr>

<td>Peter</td>

<td>Griffin</td>

<td>$100</td>

</tr>

<tr>

<td>Lois</td>

<td>Griffin</td>

<td>$150</td>

</tr>

<tr>

<td>Joe</td>

<td>Swanson</td>

<td>$300</td>

</tr>

<tr>

<td>Cleveland</td>

<td>Brown</td>

<td>$250</td>

</tr>

</table>

</body>

</html>

The width and height Properties

Set the width of the table, and the height of the table header row:

Firstname Lastname Savings

Peter Griffin $100

Lois Griffin $150

Joe Swanson $300

Cleveland Brown $250

Horizontal Alignment

The text-align property sets the horizontal alignment (like left, right, or center) of the

content in <th> or <td>.

Example

th {

text-align: left;

}

By default, the content of <th> elements are center-aligned and the content of <td>

elements are left-aligned.

Vertical Alignment

The vertical-align property sets the vertical alignment (like top, bottom, or middle) of

the content in <th> or <td>.

Example

td {

height: 50px;

vertical-align: bottom;

}

By default, the vertical alignment of the content in a table is middle (for both <th> and

<td> elements).

Table Padding

To control the space between the border and the content in a table, use the padding

property on <td> and <th> elements:

Example

th, td {

padding: 15px;

text-align: left;

}

Horizontal Dividers

Add the border-bottom property to <th> and <td> for horizontal dividers:

Example

th, td {

border-bottom: 1px solid #ddd;

}

Hoverable Table

Use the :hover selector on <tr> to highlight table rows on mouse over:

Example

tr:hover {background-color: #f5f5f5}

<!DOCTYPE html>

<html>

<head>

<style>

table {

border-collapse: collapse;

width: 100%;

}

th, td {

padding: 8px;

text-align: left;

border-bottom: 1px solid #ddd;

}

tr:hover{background-color:#f5f5f5}

</style>

</head>

<body>

<h2>Hoverable Table</h2>

<p>Move the mouse over the table rows to see the effect.</p>

<table>

<tr>

<th>First Name</th>

<th>Last Name</th>

<th>Points</th>

</tr>

<tr>

<td>Peter</td>

<td>Griffin</td>

<td>$100</td>

</tr>

<tr>

<td>Lois</td>

<td>Griffin</td>

<td>$150</td>

</tr>

</table>

</body>

</html>

Striped Tables

For zebra-striped tables, use the nth-child() selector and add a background-color

to all even (or odd) table rows.

Example

tr:nth-child(even) {background-color: #f2f2f2}

Table Color

The example below specifies the background color and text color of <th> elements.

Example

th {

background-color: #4CAF50;

color: white;

}

Responsive Table

A responsive table will display a horizontal scroll bar if the screen is too small to

display the full content. Add a container element (like <div>) with overflow-x:auto around

the <table> element to make it responsive.

Example

<div style="overflow-x:auto;">

<table>

... table content ...

</table>

</div>

CSS Forms

The look of an HTML form can be greatly improved with CSS.

Styling Input Fields

Use the width property to determine the width of the input field:

Example

input {

width: 100%;

}

If a style is to be applied to a specific input type, use attribute selectors:

 input[type=text] - will only select text fields

 input[type=password] - will only select password fields

input[type=number] - will only select number fields

Padded Inputs

Use the padding property to add space inside the text field. When there are many

inputs after each other, add some margin, to add more space outside of them.

Example

input[type=text] {

width: 100%;

padding: 12px 20px;

margin: 8px 0;

box-sizing: border-box;

}

We have set the box-sizing property to border-box. This makes sure that the

padding and eventually borders are included in the total width and height of the elements.

Bordered Inputs

Use the border property to change the border size and color, and use the border-

radius property to add rounded corners.

Example

input[type=text] {

border: 2px solid red;

border-radius: 4px;

}

If a bottom border only is required , use the border-bottom property.

Example

input[type=text] {

border: none;

border-bottom: 2px solid red;

}

Colored Inputs

Use the background-color property to add a background color to the input, and the color
property to change the text color.

Example

input[type=text] {

background-color: #3CBC8D;

color: white;

}

Focused Inputs

By default, some browsers will add a blue outline around the input when it gets focus

(clicked on).This behavior can be removed by adding outline: none; to the input.

Use the : focus selector to do something with the input field when it gets focus.

Input with icon/image

If an icon is required inside the input, use the background-image property and

position it with the background-position property. Also notice that a large left padding is

added to reserve the space of the icon.

Example

input[type=text] {

background-color: white;

background-image: url('searchicon.png');

background-position: 10px 10px;

background-repeat: no-repeat;

padding-left: 40px;

}

Animated Search Input

transition property is used to animate the width of the search input when it gets focus.

Styling Textareas

The resize property is used to prevent textareas from being resized (disable the "grabber"

in the bottom right corner).

Example

textarea {

width: 100%;

height: 150px;

padding: 12px 20px;

box-sizing: border-box;

border: 2px solid #ccc;

border-radius: 4px;

background-color: #f8f8f8;

resize: none;

}

UNIT-3

CLIENT SIDE SCRIPTING (JAVA SCRIPT)

Objectives:

At end the this unit, students can

 Define scripting language

 Need of scripting language in programming

 Differentiate between client side scripting and server side scripting

 Explain the life span of variables

 Discuss about different types of operators

 Describe the conditional statements

 Define functions

 Describe execution of deferred scripts

 Explain DOM

 State the types of predefined objects

 State the types of dialog boxes

 Define events and its handlers

 State the types of event handlers

 Define forms

 Describe forms element properties

 Define image map

 Differentiate between client side and server side image maps

 Describe status bar and cookies

 Define live connect

 Describe java console

 Explain the java to java script communications.

 JAVA SCRIPT BASICS

A scripting language is a programming language which can be embedded within HTML,

commonly are used to add functionality to a Web page. It employs a high-level construct

to interpret and execute one command at a time. The functionalities it adds are , different

menu styles or graphic displays or to serve dynamic advertisements. There are two types

of scripting languages. They are 1. Client side scripting languages 2. Server side scripting

language.

 The client-side scripting languages, affects the data that the end user sees in

a browser window.

http://www.ustudy.in/node/1658#u5

 The server-side scripting language manipulates the data, usually in a database, on

the server.

Scripting languages came about largely because of the development of the Internet as a

communications tool. JavaScript, ASP, JSP, PHP, Perl, and Python are examples of

scripting languages.

 Need of scripting Languages:

i) It is used for validating the input data given by the user in the forms

ii) The data type conversion takes automatically

iii) We can write event driven programs using scripting language. i.e mouse click

event, keyboard event.

iv) We can create new variable without specifying its type.

v) A script is used in order to extend application functionalities, or to execute simple

tasks by using pre-existing components

Structure of java script programs

Java script codes are written within html program using the script tags

<script>…..</Script> as follows :

<html>
<head>

<Title> Script Example</Title> <head>
<body>

<script language="Javascript" type="text/javascript">
Statement1
………..
Statement n
</script>

</body>
</html>

Where

<html>……</html> <head>……<head>

<title>…….</title> <body>……</body>

<script>……</script> ------------ Script tag

Language – Scripting language used

HTML tags

Statements – valid java script language statement

 Variables and data types

Declaring variable

Variable is a name given to memory location to store data. The stored data changes during

the execution of the program.

Variables are declared with the var keyword as follows.

var name = value ;

where

var – keyword and it is optional

name – valid user defined name

value – data to be stored

Example

var name = ―Hello‖

Life span of variable

Life span of variable means how long a variable retains a given value during the

execution of the program. JavaScript variables have only two scopes. They are

i) Local variable

ii) Global variable

Local variable

Variables which are declared inside a function are called local variables. A local

variable will be visible only within a function where it is defined.

Example:

<html>

</html>

<body>

</body>

<script type = "text/javascript">

function checkscope()

{

var myvar = "local"; // Declare a local variable

document.write(myvar);

}

</script>

Global Variable

A global variable has global scope which means it can be defined anywhere in

JavaScript code. These variables are alive and active throughout the program.

<html>

<body>

<script type = "text/javascript">

var myVar = "global"; // Declare a global variable

function checkscope()

{

</html>

}

</script> </body>

Data types

In java script there is no need to specify the data type of the variables. These
variables can hold many data types such as numbers, strings and more:

Example:

i) var length = 16; // Number

This assigns an integer data value to the variable length

ii) var lastName = "Johnson"; // String

This assigns a string data to the variable lastname.

JavaScript Types are Dynamic.

JavaScript has dynamic types. This means that the same variable can be used to hold

different data types:

Example:

var x; // Now x is undefined

var x = 5; // Now x is a Number

var x = "Welcome"; // Now x is a String

Literals

Literals are fixed values that does not change during the script execution. The

following types of literals are used in java script.

Variable = constant or variable or expression

Variable operator = expression

 Numbers

 Boolean

 String

 Null

 Undefined

 Operators

An operator is a symbol which represents an operation that can be performed on

data. There are six operators available in java script to carry out the operation. They are

 Assignment Operators

 Short hand Assignment Operators

 Comparison Operators

 Conditional (or ternary) Operators

 Logical (or Relational) Operators

1. Assignment operators

Assignment operators are used to assign values to JavaScript variables. This is done with

the help of the assignment operator = .

The general form is

Rules:

i) only one variable is allowed on the LHS of assignment operator.

ii) All operation must be written explicity.

Example:

1. var x = 100

The value 100 is assigned to the variable x.

2. Short hand assignment operators

Short hand assignment operators are operators which are used to simplify the

coding of certain type of assignment statement. The general form is

Example

Operator Meaning Example

+=

Value of LHS variable will be added to the RHS

value and is assigned to LHS variable

x=x+10 can be written as x+=10

-=

RHS value will be subtracted from LHS variable

and is assigned to LHS variable

X=x*10 can be written as x-=10

*=

Value of LHS variable will be multiplied by the

RHS value and is assigned to LHS variable.

x=x*10 can be written as x*=10

/=

Value of LHS variable will be divided by the RHS

value and is assigned to LHS variable

x=x/10 can be written as x/=10

%=

Value of LHS variable will be divided by the RHS

value and remainder will be stored in LHS

variable

x=x%10 can be written as x%=10

iii) Comparison operator

Comparison operators are used in logical statements to determine equality or

difference between variables or values.

Operator Operation Example

> greater than 8>5

< less than 2<7

>= greater than equal to 8>=B

<= less than equal to 10<=7

== equal to 10==(A+B)

iv) Computational operators

Arithmetic operators are used to do arithmetic calculations. There are two types

i) Binary operators

ii) Unary operators

i) Binary operators:

Binary operators need two operands for operations. They are

Operator Operation Example

+ Addition x=5+3

- Subtraction y=x-10

* Multiplication Z=5*3

/ Division X=10/3

% Modulo operator X=5%3

ii) Unary operator

Unary operators need only one operand for operation. They are

Operator Operation Example

- Unary minus -10

++ Increment ++i

-- Decrement --i

V) Logical Operator:

Logical operators are used to determine the logic between variables or values.

Operator Meaning Example

&& AND A>B&&x==y

|| OR A>B||X<=Z

! NOT !X

 Control Structure

Control Structures are used to transfer java script program control from one

statement to any other statement. The different control statements are,

i) Conditional Statement

ii) Looping Statement

i) Conditional Statement:

If (test condition)

{

Statement block;

}

next statement;

Decision making statements are used to skip or to execute a group of statements

based on the result of some condition. The decision making statements are,

1. if statement

2. if … else statement

3. nested if

4. Switch statement.

1. if statement

Logical if statement is used to execute or skip one statement or group of statements

for a particular condition. The general form is

When this statement is executed, the computer first evaluates the value of the test

condition.

If the value is true, statement block and next statement are executed sequentially.

If the value is false, statement block is skipped and execution starts from next

statement.

Flow diagram

If (test condition)

{

Statement block 1;

}

else

{

Statement block 2;

}

next statement;

Example:

If(mark ==30)

{

mark=mark+10;

}

The above statements test the mark of the student. If the student mark is 30, then 10 mark

will be added to his marks. For other marks no additional marks are added.

2. if--else statement

If--else statement is used to execute one group of statements if the test condition is

true or other group if condition is false.

The general form is

When this statement is executed, the computer first evaluates the value of the test condition.

if the value is true, statement block-1 is executed and the control is transferred to next

statement.

If the value is false, the statement block-2 is executed and the control is transferred

to next statement.

Flow diagram

Example:

If(mark>=30)

{

mark=mark+10;

}

else

{

Mark=mark+5;

}

This program tests are mark of the student. If it is greater than 35, 10 marks will be added.

Else 5 marks will be added.

3. switch statement

The switch statement can have a number of possible execution paths. This permits any

number of branches.

The general form is

When this statement is executed the computer first evaluates the values of the

expression in the keyword switch. This values is successively compared with the case label

1, label 2, label n. if a case label matches with the value, the statement block associated with

the case label is executed.

Then the control is transferred to the next statement. If none of the case matches

with the value, the default statement block is executed.

Flow diagram

switch(expression)

{

case label 1:

statement block-1;

break;

case label n:
statement block-n

break;

default:
break

}
next statement

Example

html>

<body>

<script>

var d = new Date();

day=d.getDay();

switch (day)

{

case 0:

document.write(―SUNDAY‖);

break;

case 1:

document.write(―MONDAY‖);

break;

default:

document.write(―great week‖);

}

</script>

</body>

</html>

ii) Looping statement

Looping statements are the statements execute one or more statement repeatedly

several number of times.

loop structures are used to execute a group of statements repeatedly until some

condition is satisfied. In general, the statements are executed sequentially: The first statement in a

function is executed first, followed by the second, and so on. The looping structures are

 while structure

 do-while structure

 for structure

 for-in structure

1. While structure

It repeats a statement or a group of statements while a given condition is true. It tests

the condition before executing the loop body.

Flow diagram

Example

int i=1;

while(i<5)

{

document.write(―Welcome‖);
i++;

}

These program statements are used to display the message welcome, four times.

Initially the condition i<5 is tested. If it is false the program ends without executing the body

of the loop. If it is true the body of the loop will be executed repeatedly four times.

While(test condition)

{

body of the loop;

}

next statement

do

{

body of the loop;

}

while(test condition);

next statement;

2. do-while loop

A do-while loop is similar to a while loop, except that a do-while loop is execute at

least one time.

A do while loop is a control flow statement that executes a block of code at least once, and

then repeatedly executes the block, or not, depending on a given condition at the end of the

block (in while).

The general form is

When this statement is executed the body of the loop is executed first. Then the test

condition is evaluated. If the value is false, the control is transferred to the next statement.

If the value is true the body of the loop is executed repeatedly until the test condition

becomes false. When the test condition becomes false the control is transferred to the next

statement

Flow diagram

for(control variable; test condition; increment or decrement)

{

body of the loop;

}

next statement;

Example

var i=1;
do
{
document.write(―welcome‖);
i++;
}
while(i<5);

These program statements are used to display the message welcome, four times.

Initially the body of the loop is executed once and the condition i<5 is tested. If it is false the

program ends.

If it is true the body of the loop is executed repeatedly four times

3. for statement

For statement is used to execute a statement or a group of statements repeatedly for

a known number of times.

The general forms is

i) The init step is executed first, and only once. This step allows you to declare and initialize

any loop control variables.

ii) Next, the condition is evaluated. If it is true, the body of the loop is executed. If it is false,

the body of the loop does not execute and the flow of control jumps to the next statement

just after the 'for' loop.

iii) After the body of the 'for' loop executes, the flow of control jumps back up to

the increment statement. This statement allows you to update any loop control variables.

This statement can be left blank, as long as a semicolon appears after the condition.

iv) The condition is now evaluated again. If it is true, the loop executes and the process

repeats itself (body of loop, then increment step, and then again condition). After the

condition becomes false, the 'for' loop terminates.

Flow diagram

Example

sum=0;

for(i=1; i<100; i++)

{

sum = sum+i;

}

document.write(―sum=‖+sum);

}

4. for-in statement

The for/in statement loops through the properties of an object.

The block of code inside the loop will be executed once for each property.

The general form is

for (var in object)

{
statement to be executed
}

When this statement is executed the body of the loop will be executed number of

times equal to the number of elements in the array.

Example

<html>

<body>

<script type=‖text/javascript‖>

var x;

var name = new Array();

name[0]= ―welcome‖

name[1]= ―great day‖

name[2]= ―good morning‖

for(x in name)

{

document.write[name[x]);

}

</script>

</body>

</html>

During the execution of the above program the write statement will be executed three

times.

Output

welcome

great day

good morning

Break statement

The break statement "jumps out" of a loop.

Break statement is used to exit from a loop while the test condition is true. This statement

can be used within a for, while, do while or switch statement.

break;

continue;

The general form is

When the break statement is executed inside a loop, the execution of the loop is

terminated and the program continues with the statement following the loop.

If break statement is used in nested loops, it will exit from the loop containing it.

Example

var i =0;

while(i<6)

{

If(i==3)

break;

i++;

}

document.write(i); i=3

the output is 3

Continue statement

The continue statement breaks one iteration (in the loop), if a specified condition

occurs, and continues with the next iteration in the loop. In other words, the statement after

the keyword continue will be skipped and the control is transferred to the beginning of the

loop.

The general form is

function functionname(parameters)
{
local variable declarations

valid statements
return();
}

Example:

n=0;

for(i=1;i<5;i++)

{

If(i==3)

continue;

n=n+i;

}

During the execution if the value of i=3, the statement below the keyword continue is

skipped and the control is transferred to the beginning of the loop.

Advantages of looping statements

 Reduce length of Code

 Take less memory space.

 Burden on the developer is reducing.

 Time consuming process to execute the program is reduced.

 Object based programming and message boxes

Java script is a power full object based language. It is not hundred percentage object

oriented language as java. Therefore with the help of java script we can create self

contained java script objects so that it can be reused.

 Functions

A JavaScript function is a block of code designed to perform a particular task.

A JavaScript function is executed when "something" invokes it (calls it).

The general form is

functionname(values)

Where

function, return-keyword

functionname – user defined name

parameters – variable to receive values from function call

Example

function area(w1, w2, h)

{

var area = (w1+w2)*h/2;

document.write (area);

}

In this area is name of the function. It has three arguments w1, w2, h. This can be called

from anywhere on the page with the values of w1, w2 and h.

Calling the function

The defined function can be called from anywhere in our java script code

The general form for calling the function is

functionname – name of the already defined function

values-values given to parameters in the calling function

Example

<html>

<body>

<script>

function myFunction(p1, p2) function definition

{

var d = p1*p2;

document.write(―product=‖+d);

}

myFunction(4, 3); function calling

return[OR] return(expression)

</script>

</body>

</html>

Return statement

Return statement is used to return a value from the function. The general form is

Example

<html>

<body>

<script language = ―javascript‖>

function myFunction(a, b)

{

var d = a * b; return(d);

}

var s = myFunction(4, 3);

document.write(―product = ―+s); </script>

</body>

</html>

Output

12

 Executing deferred scripts

The defer is only for external scripts. Deferred scripts(functions) are java scripts that

will not do anything immediately. This can be executed by using deferred commands from

outside the deferred scripts.

var objectname=new object()

Three ways of calling deferred scripts

1. By using ordinary function calling method from inside or outside the scripts.

2. By user initiated events.

3. By clicking on links.

Example

<html>

<body>

<script language=‖javascript‖>

function sum(a,b,c)

{

var d=a+b+c; deferred script

document.write(―sum=‖+d);

}

sum(5,5,5); deferred script calling

</script>

</body>

</html>

 Objects

JavaScript is designed on a simple object-based paradigm. An object is a collection of

properties, and a property is an association between a name (or key) and a value. A

property's value can be a function, in which case the property is known as a method.

General form to create objects.

where

object name = user defined name

new, var – keyword

object – name of the class or object

Document object

Every web page resides inside a browser window which can be considered as an

object.

A Document object represents the HTML document that is displayed in that window. The

Document object has various properties that refer to other objects which allow access to and

modification of document content.

The way document content is accessed and modified is called the Document Object

Model, or DOM.

Each HTML document that gets loaded into a window becomes a document object.

The document contains the contents of the page.

i) Document object properties

alinkColor - The color of active links.

bgColor - Sets the background color of the web page.

domain - The domain name of the document server.

fgColor - The text color attribute set in the <body> tag.

linkColor - The color of HTML links in the document. It is specified in the

<body> tag.

vlinkColor - The color of visited links as specified in the <body> tag

cookie - Used to identify the value of a cookie.

applets- An array containing an entry for each applet in the document.

images - An array containing an entry for each image in the document.

ii) Document object methods

Methods are useful for everything from displaying the contents of the object to the

screen.

1. open()

This method is used to open the output stream to the document object for writing

2. close()

This methods is used to close the output stream.

3. write()

This method is used to write any content on the document.

4. writeln()

This method is used to write the values passed to the document object followed by a

new line

Simple programs

1. Write a program to add two numbers.

<script>

var num1, num2, sum;

num1 = prompt("Enter first number");

num2 = prompt("Enter second number");

sum = parseInt(num1) + parseInt(num2) ;

alert("Sum = " + sum) </script>;

2. write a program to find maximum number until sees zero

<script>

var max = 0;

var num;

num = prompt("Enter new value, or 0 to end");

while (num != 0) {

if (parseFloat(num) > max)

max = num;

num = prompt("Enter new value, or 0 to end");

}

document.write("<P> Max = " + max);

</script>

3. Write a program to concatenates two names

<script>

var firstname, secondname, result;

firstname = prompt("Enter first name");

secondname = prompt("Enter last name");

result = firstname + secondname ;

alert("hello, " + result);

</script>

var arrayname = new Array(size);

arrayname(index) =‖value‖;

 Predefined objects

The predefined objects do not represent any part of the web page. But these are

used for writing programming functions. The important predefined objects are;

1. Array object

2. History object

3. Location object

1. Array object

An array object stores multiple values in a single variable. An array is used to store a

collection of data, but it is often more useful to think of an array as a collection of variables of

the same type.

Syntax

Where

var, new - keyword

arrayname - user defined name

size - size of the array

Assigning values to the created array

This is use to giving initial values to the created array is called assigning values.

Syntax

Example

var fruits = new array("banana", "orange", "grapes");

Methods in array object

i) length() – this method is used to find the number of elements in an array

ii) concat()-Returns a new array comprised of this array joined with other array(s).

iii)filter() - Creates a new array with all of the elements of this array for which the

provided filtering function returns true.

iv) join()-Joins all elements of an array into a string.

v) foreach()-Calls a function for each element in an array.

vi) reverse() – It is used to reverse the order of elements in an array.

vii) shift() - Removes the first element from an array and returns that element.

viii) sort()-Sorts the elements of an array

Example

1. Writ e a program to concate two arrays

<html>

<head>

<title>JavaScript Array concat Method</title>

</head>

</html>

Output

<body>

</body>

<script type="text/javascript">

var vehicle = ["car", "auto", "bike"];

var wheel = [4, 3 2];

var vehiclewheel = vehicle.concat(wheel);

document.write("vehiclewheel: " vehiclewheel);

</script>

vechicle wheel : car,auto,bike,4,3,2

2. Write a program to shift array element

<html>

<head>

<title>JavaScript Array shift Method</title>

</head>

<body>

<script type="text/javascript">

var element = [105, 1, 2, 3].shift();

document.write("Removed element is : " + element);

location.property name;

</script>

</body> </html>

Output

Removed element is : 105

3. write a program to sort an array
<html>

<head>

<title>JavaScript Array sort Method</title>

</head>

<body>

<script type="text/javascript">

var fruits = new Array("orange", "mango", "banana");

var sorted = fruits.sort();

document.write("sorted array elements : " + sorted);

</script>

</body>

</html>

Output

sorted array elements: banana,mango,orange

2. History object

The history object represents an array of URLs visited by the user. By using this

object, you can load previous, forward or any particular page.

i) History objects properties

a) current - specifies the URL of the current entry in the object

b) length - specifies the number of elements contained in the object

c) next - The URL of the next document in the history object.

d) previous - The URL of the last document in the history object.

The general form to use the above property is

where;

location-object name , property name-name of the property

ii) History objects methods

The following are the important methods in history objects. They are;

a) back()

b) forward()

c) go()

a) back()

This method is used to Go to the previous URL entry in the history list.

Example

<form>

<input type="button" value="go back" onclick="history.back()">

</form>

b) forward()

Specifies a method that loads the next URL from the history list

Example

<form>

<input type="button" value="go forward" onclick="history.forward()">

</form>

c) go()

This method is used to loads a specific URL from the history list

Example

<form>

<input type="button" value="go back" onclick="history.go(-1)">

</form>

Example

<html>

<body>

<script type="text/javascript">

var ex = history.length;

document.write("The number of pages visited

before this page is" +ex+ " pages!!!.")

</script>

</body> </html>

3) Location Object

This location object is used to holds information on the current URL.

Can not be created by the user. It is a predefined object.

Can be accessed by the location property of a window object.

i) Location object properties

a) host – specifies the host and domain name or IP address of a network host.

b) hostname- Specifies the host: port portion of the URL.

c) href - Specifies the entire URL

d) pathname- Specifies the URL-path portion of the URL.

e)protocol- Specifies the beginning of the URL, including the colon.

ii) Location object methods

a) reload()-Forces a reload of the window‘s current document

b) replace- Loads the specified URL over the current history entry

Example

<html>

<body>

<button onclick="myFunction()">Load new document</button>

<script>

function myFunction()

{

window.location.assign("http://www.google.com‖);

}

</script>

</body>

</html>

http://www.google.com/

Window.showmodeldialog(―message‖)

alert(―message‖)

 Dialog boxes

JavaScript supports three important types of dialog boxes. These dialog boxes can

be used to raise and alert, or to get confirmation on any input or to have a kind of input from

the users.

Syntax

Where

Window - object

Showmodeldialog - function name

Message - action to take

Example

<html>

<head>

<script language = ―java script‖>

function foropen()

{

window.showmodeldialog(―d:\test.html‖)

}

</head>

<body>

</body>

</html>

</script>

<form name=webpgm>

<input type=‖button‖ value=‖push me‖ onclick=‖foropen()‖>

Alert boxes

An alert dialog box is mostly used to give a warning message to the users.

Where

alert – function name

message – to be displayed

Example 1:

<html>

<body>

<button onclick="myFunction()">Try it</button>

<script>

</body>

</html>

</script>

function myFunction() {

alert("Hello! I am an alert box!");

}

Example 2:

<html>

<head>

<script type="text/javascript">

<!--

</head>

<body>

}

//-->

</script>

function Warn() {

alert ("This is a warning message!");

document.write ("This is a warning message!");

<p>Click the following button to see the result: </p>

<form>

<input type="button" value="Click Me" onclick="Warn();" />

</form>

</body>

</html>

confirm(―message‖)

Confirm boxes

A confirmation dialog box is mostly used to take user's consent on any option. If the

user clicks on the OK button, the window method confirm () will return true. If the user clicks

on the Cancel button, then confirm () returns false.

Syntax:

Example

<html>

<head>

<button onclick="myFunction()">Try it</button>

<script>

function msg()

{

var x;

if (confirm("Press a button!") == true)

{

x = "You pressed OK!";

}

else

{

</head>

<body>

</script>

x = "You pressed Cancel!";

}

document,write(x);

}

</body>

</html>

<input type=‖button‖ onclick = ―msg()‖ value=‖Display a confirm box‖>

Prompt boxes

The prompt dialog box is very useful when you want to pop-up a text box to get user

input. Thus, it enables you to interact with the user. The user needs to fill in the field and

then click OK.

This dialog box is displayed using a method called prompt()

Syntax

Where

window - object

prompt - function

default text - no need to give this value. So it can be left blank.

Message - optional. The message to display in the dialog box.

Example

<html>

<head>

<script type="text/javascript">

<!--

}

//-->

</script>

</head>

<body>

<form>

function getValue(){

var retVal = prompt("Enter your name : ", "your name here");

document.write("You have entered : " + retVal);

<input type="button" value="Click Me" onclick="getValue();" />

</form>

</body> </html>

window.prompt("message","defaultText")

;

Output

Java script with XML

Events

When the page loads, it is called an event. When the user clicks a button, that click

too is an event.

JavaScript's interaction with HTML is handled through events that occur when the

user or the browser manipulates a page.

Examples

i) mouse click

ii) pressing any key

iii) closing a window

iv) resizing window

v) image loading

vi) submitting form

The functions will be executed only when event occurs.

 Event handlers

Event handlers are functions which are used to handle the events. There are two

types of event handlers.

i) interactive event handler

ii) non interactive event handler

An interactive event handler that depends upon users interaction. On mouse click is

an interactive event handler because, it depends on users action on the mouse.

Non interactive event handler is the one that will not depends on user action. onload

is an non interactive event handler because, it executes automatically without the interaction

of the user.

onload=‖function name‖

Important event handlers

i) onload

ii) onclick

iii) onfocus

iv) onunload

v)onblur

vi)onerror

vii)onmouseover

viii)onmouseout.

i) onload

The onload event occurs only when the document loaded.

where

onload – event handler

function name – function to handle to the event

Example

<html>

<head>

<script>

function myFunction()

{

</head>

}

</script>

alert("Page is loaded");

<body onload="myFunction()">

<h1>Hello World!</h1>

</body>

</html>

ii) onclick

onclick=‖function name‖

The onclick event Occurs only on a mouse click. This is the most frequently used event type

which occurs when a user clicks the left button of the mouse.

Example

<html>

<head>

<script type="text/javascript">

function sayHello()

{

alert("Hello World")

}

</head>

<body>

</script>

</body>

</html>

<form>

<input type="button" onclick="sayHello()" value="Say Hello" />

</form>

iii) onunload

The onunload event occurs only when user exists a page.

Example

<html>

<head>

<script>

function myFunction() {

alert("welcome");

}

onunload=‖function name‖

onfocus=‖function name‖

onblur=‖function name‖

</script>

</head>

<body onunload="myFunction()">

</body>

</html>

iv) onfocus

The onfocus event occurs only when the window gets focus

Example

<html>

<body>

Enter your name: <input type="text" onfocus="focus(this)">

<script>

function focus(x) {

x.style.background = "red";

</body>

</html>

Output

}

</script>

Enter your name:

When the input field gets focus, a function is triggered which changes the background-

color(red).

v) onblur

The onblur event triggers only when the window loses focus.

Onerror=‖function name‖

Example

<html>

<head>

</head>

<body>

</body>

</html>

<script>

function sample() {

var x = document.getElementById("fname");

x.value = x.value.toUpperCase();

}

</script>

Enter your name: <input type="text" id="fname" onblur="sample()">

vi) onerror

The onerror eventTriggers when an error occurs.

Example

<html>

<head>

<script>

function imgError() {

alert('The image could not be loaded.');

</head>

<body>

}

</script>

</body>

</html>

Submit

 Forms

Each form in the document creates a form object. Form fields do not necessarily

have to appear in a <form> tag. Forms can be put anywhere in a page.

Form array

Form array is an array used to store the form objects. Using this array we can store

the form objects. It is used to access the form elements for doing some validations on the

page.

Form element properties

 action - browser to handle the form when it is submitted to a CGI program running

on the server.

 method="GET" defines the method data is passed to the server when the form is

submitted.

 input type="text" defines the text box object. This is standard HTML markup.

 id- sets or returns the id of a form

 target – set or returns where to open the action URL in a form.

 enctype- it is MIME type used to encode the content of a form

Example 1

<html>

<form action="C:\Documents and Settings\admin\Desktop\html\forms.html" method="get">

First name: <input type="text" name="fname">

Last name: <input type="text" name="lname">

<input type="submit" value="Submit">

</form>

</html>

output

First name :

Last name :

Example2

<HTML>

<HEAD>

<TITLE>Test Input </TITLE>

<SCRIPT LANGUAGE="JavaScript">

function readText (form) {

TestVar =form.inputbox.value;

alert ("You typed: " + TestVar);

}

function writeText (form) {

form.inputbox.value = "Have a nice day!"

}

</SCRIPT>

</HEAD>

<BODY>

<FORM NAME="myform" ACTION="" METHOD="GET">

Enter something in the box:

<INPUT TYPE="text" NAME="inputbox" VALUE=""><P>

<INPUT TYPE="button" NAME="button1" Value="Read" onClick="readText(this.form)">

<INPUT TYPE="button" NAME="button2" Value="Write" onClick="writeText(this.form)">

</FORM>

</BODY>

</HTML>

When you click the "Read" button, JavaScript calls the readText function, which reads and

displays the value you entered into the text box.

When you click the "Write" button, JavaScript calls the writeText function, which writes "Have

a nice day!" in the text box.

Javascript:protoclspecifier

 Using java script URLs

Javascript URLs are used to include javasrcipt code on the client side.

Where

Javascript - keyword

Protocol specifier – to specify the javascript code

Java script interpreter executes the codes present in the URL while execution.

Example

i) javascript: var now = new Date();

<h1> time is: </h1>‖+now‖;

 Image maps

The <map> tag is used to define a client-side image-map. An image-map is an image

with clickable areas in the image, which has a link associated with it. There are two types of

image maps. They are,

i) Client side image map

ii) server side image map

i) Client side image map

With a client side image map, specify a list of areas that will be used as the links. The

information required to run the image map must be given in our html document. Since all the

Write Read

<map name=‖name of the map‖>

<area shape=‖name of the shape‖ cords=‖x,y,w,h‖
href=‖name of the link‖ alt=‖image‖>

</map>

information regarding the map functions are provided on the client side, it‘s called client side

image map.

There are four types of these areas; rectangles, circles, polygons and default. Its down with

the help of <MAP> tag

Syntax

Where

Name - name of the map used

Cords - x,y co-ordinates to fix the map area, w- width of the map,

h-height of map area.

Shape - shape to be defined. It can be rect, circle, poly

Href - url to be linked by this area

Alt - alternate message to display on the screen

Example

<html>

<body>

<map name="planetmap">

</body>

</html>

<area shape="rect" coords="0,0,82,126" alt="Sun" href="d:\sun.html">

<area shape="circle" coords="90,58,3" alt="Mercury" href="d:\mercury.html">

<area shape="circle" coords="124,58,8" alt="Venus" href="d:\venus.html">

</map>

Server side image map

Server side image map is an image map run by common gateway interface. simply
put the image inside a hyper link and use ismap attribute which makes it special image and

when the user clicks some place within the image, the browser passes the coordinates of the

mouse pointer along with the URL specified in the <a> tag to the web server.

The server uses the mouse-pointer coordinates to determine which document to

deliver back to the browser.

The coordinates of the mouse position are screen pixels counted from the upper-left

corner of the image, beginning with (0,0).

Example

<html>

<body>

</body>

</html>

 status bar

The status bar sets the text in the status bar at the bottom of the browser window. It

is used to display the any information on the status window.

Properties

a) status information about the browser window

b) default status

we try to open a particular web page, the status of the operation such as connecting

host, opening page and other information will be displayed on the status bar.

Example

<script type="text/javascript">

function statwords(message)

{

window.status = message;

}

</script>

<center>

<form>

<input type="button" VALUE="Write a status bar message" OnClick="statwords('This is my

message');">

</form>

</center>

The javascript event onclick activates the function called statwords and passes a

text string to a variable called a message. The function then activates the status bar area

and insert the text string.

 Cookies

Cookies are information , stored in a small files on our browser. It contains some

data.

1. A name-value pair containing the actual data

2. An expiry date after which it is no longer valid

3. The domain and path of the server it should be sent to

When a user visit a web page, his username stored in a cookie. Next time user visit

a web page , the cookie just remember his username

Cookies contains the following components.

i) name -Cookies are set and retrieved in the form of key-value pairs

ii) expires -The date the cookie will expire. If this is blank, the cookie will expire when the

visitor quits the browser.

iii) Domain − The domain name of your site.

iv) Path − The path to the directory or web page that set the cookie

v) Secure − If this field contains the word "secure", then the cookie may only be retrieved

with a secure server. If this field is blank, no such restriction exists.

vi) Name=Value − Cookies are set and retrieved in the form of key-value pairs

Use of cookies

1. Web servers to perform functions such as tracking information about user visits to

websites.

2. it is used to store information between web pages

3. The main use of the cookie is to identify the user and customize web page for

them according to the information stored in the cookie

 Live connect

Java applet can communicate with Java script in a same HTML page through a

technology called Live Connect which is supported by all major web browsers. LiveConnect

was first implemented in the Netscape browser, and currently Mozilla Firefox fully supports

this feature.

There are two main aspects of LiveConnect:

 Calling Java methods from JavaScript

 Using JavaScript objects in Java

Java console

It is browser window that is used to display java messages. This is used mainly for

simple debugging operations. Java Console is a simple debugging aid that redirects

any System.out and System.err to the console window. It is available for applets running with

Java Plug-in and applications running with Java Web Start.

The steps given below are followed to enable java console in internet explorer.

Internet Explorer

 Click Tools and then Internet Options

 Select the Security tab, and select the Custom Level button

 Scroll down to Scripting of Java applets

 Make sure the Enable radio button is checked

 Click OK to save your preference

Java script to java communication

Whenever you need to access a Java object, class, array, or package just use one of

the following four LiveConnect objects.

 JavaObject – Used to access a Java object from JavaScript.

 JavaClass – Used as a reference to a Java class.

 JavaArray – Used to access Java arrays.

 JavaPackage – Used as a reference to a Java package.

Whenever your JavaScript code refers to a Java package, the JavaScript runtime

automatically creates a JavaPackageobject.

In this case, we are creating an instance of class MyClass which is inside the

mypackagepackage.

Java to java script communication

To communicate from the java to javascript, import package netscape.javascript

package in to the java file. It contains following classes.

i) netscape.javascript.Jsobject- JSObject allows Java to manipulate objects that are

defined in JavaScript. Values passed from Java to JavaScript

ii) netscape.javascript.JSException- its allow java code to handle script errors.

To access the live connect classes, place the jar file on the jdk compiler class path.

SUMMARY

 Scripting languages are programming languages used to write web based application

 Life span of variable means how long a variable retains a given value during the

execution of the program.

 Variables are of two types 1. Global 2. Local

 A global variable has global scope which means it can be defined anywhere in

JavaScript code.

 Variables which are declared inside a function are called local variables.

 JavaScript variable has dynamic data types. This means that the same variable can

be used to hold different data types

 Literals are fixed values that does not change during the script execution.

 An operator is a symbol which represents an operation that can be performed on

data.

 Assignment operators are used to assign values to JavaScript variables

 Short hand assignment operators are operators which are used to simplify the

coding of certain type of assignment statement.

 Comparison operators are used in logical statements to determine equality or

difference between variables or values.

 Logical operators are used to determine the logic between variables or values.

 Arithmetic operators are used to do arithmetic calculations. There are two types i)

binary operator ii) unary operator

 Control Structures are used to transfer java script program control from one

statement to any other statement.

 Looping statements are the statements execute one or more statement repeatedly

several number of times.

 If statement is used to execute or skip one statement or group of statements for a

particular condition.

var myVar=new Packages.mypackage.MyClass();

 If--else statement is used to execute one group of statements if the test condition is

true or other group if condition is false.

 The switch statement can have a number of possible execution paths. This permits

any number of branches.

 While loop repeats a statement or a group of statements while a given condition is

true. It tests the condition before executing the loop body

 A do-while loop is similar to a while loop, except that a do-while loop is execute at

least one time.

 For statement is used to execute a statement or a group of statements repeatedly for

a known number of times.

 The for/in statement loops through the properties of an object.

 The break statement "jumps out" of a loop.

 The continue statement breaks one iteration (in the loop), if a specified condition

occurs, and continues with the next iteration in the loop.

 A JavaScript function is a block of code designed to perform a particular task.

 Return statement is used to return a value from the function.

 Every web page resides inside a browser window which can be considered as an

object.

 An array object stores multiple values in a single variable

 The history object represents an array of URLs visited by the user.

 The location object is used to holds information on the current URL.

 The dialog boxes can be used to raise and alert, or to get confirmation on any input

or to have a kind of input from the users.

 When the page loads, it is called an event

 Event handlers are functions which are used to handle the events.

 Each form in the document creates a form object.

 Form array is an array used to store the form objects

 Java script URLs are used to include java script code on the client side

 An image-map is an image with clickable areas in the image, we will be taken to the

link associated with it.

 The status bar sets the text in the status bar at the bottom of the browser window.

 Cookies are information, stored in small files on our browser.

 Java applet can communicate with Java script in a same HTML page through a

technology called Live Connect which is supported by all major web browsers.

 Java console is a browser window that is used to display java messages

Review Questions

1. Define: Scripting language

2. Why need for scripting language?

3. Define: Life span of variable

4. List out the two types of variables

5. Define: Local variable

6. Define: Global variable

7. Define: Literals

Part - A

8. List out the different types of operators

9. Give the general form of for in statement

10. What is the use of break and continue statement?

11. Define Document object

12. Give the general form to create array

13. What are the three ways of calling deferred scripts?

14. Define: predefined objects

15. Define location objects

16. Define: dialog box

17. Define: Events

18. What are the two types of event handlers?

19. What is the use of form array?

20. What is the use of java script URLs?

21. Define: image map

22. Define cookies

23. What are the uses of cookies?

24. What is live connect?

25. List out the different types of live connect objects

PART – B

1. Give the structure of java script program

2. Explain about variables

3. Explain the different types of literals.

4. Discuss about logical operators

5. Give the structure of nested if and explain

6. What is a function?

7. Discuss about return statement

8. Write different types of DOM properties.

9. What is the use of forward () method in history object?

10. Differentiate between interactive and non-interactive event handler.

11. Write about form element properties.

12. Differentiate between client side and server side image map.

PART – C

1. Explain about different types of operators.

2. Explain about different types of looping statements.

3. Write a function to add two numbers.

4. Explain about different types of Document object methods.

5. Explain the following: i) Array object ii) History object

6. Explain about different types of dialog boxes.

7. Discuss about different types of event handlers.

8. Explain different types of image maps.

9. Write about status bar

10. Discuss about Cookies

11. Explain the communication between java and java script.

UNIT-4

SERVER SIDE SCRIPTING (JSP)

Objectives :

At end the this unit, students can

 Explain uses of JSP

 Differentiate between client side scripting and server side scripting

 Differentiate between JSP and Java Script

 State the advantages and disadvantages of JSP

 Describe the client and server responsibilities

 Explain the JSP Architecture

 Describe the JSP Life Cycle

 Differentiate between JSP and Servlet

 State the types of JSP Servers

 Define and explain the types of Comments in JSP

 Define Directives and its types

 Explain scripting Element

 Describe the types of scripting Elements.

 Explain different types of implicit objects

 Introductions to JSP

JSP technology is used to create dynamic web applications. JSP pages are easier to

maintain than a Servlet. JSP enables us to write HTML pages containing tags, inside which

we can include powerful Java programs. Jsp pages are platform independent.

JSP does not require additional files like, java class files, web.xml etc

Any change in the JSP code is handled by Web Container (Application server like tomcat),

and doesn't require re-compilation.

Script

A Script is a set of instructions. For web pages they are instructions either to the web

browser (client side scripting) or to the server(server side scripting)

Client Side scripting Language

The client is the system on which the Web browser is running. JavaScript is the main

client-side scripting language for the Web. Client-side scripts are interpreted by the browser.

The process with client-side scripting is:

 The user requests a Web page from the server

 The server finds the page and sends it to the user

 The page is displayed on the browser with any scripts running during or after display

Server side scripting Language

The server is where the Web page and other content lives. The server sends pages to

the user/client on request. The process is:

 The user requests a Web page from the server

 The script in the page is interpreted by the server creating or changing the page
content to suit the user and the occasion and/or passing data around

 The page in its final form is sent to the user and then cannot be changed using
server-side scripting

Java script

JavaScript is a lightweight, interpreted programming language. It is designed for

creating static web pages. It is complimentary to and integrated with Java. JavaScript is very

easy to implement because it is integrated with HTML. It is open and cross-platform.

JSP

Java Server Pages (JSP) is a technology that helps software developers create

dynamically generated web pages based on HTML, XML, or other document types.

Released in 1999 by Sun Microsystems, JSP is similar to PHP, ASP and React's JSX, but it

uses the Java programming language.

To deploy and run JavaServer Pages, a compatible web server with a servlet

container, such as Apache Tomcat or Jetty, is required.

Servlet

A servlet is a Java program that runs on a Web server. It is similar to an applet, but is

processed on the server rather than a client's machine. Servlets are often run when the user

clicks a link, submits a form, or performs another type of action on a website

Client side versus server side scripting

Client Side Scripting

 Client side scripting is used when the user‘s browser already has all the code and the
page is altered on the basis of the users input.

 Client side scripting is used to validate the data send by the client to the server.

It is used to create cookies.

 Client side scripting cannot be used to connect to the databases on the web server.

 Client side scripting can‘t access the file system that resides at the web server.

 Client side scripting is possible to be blocked by the user.

 Examples of Client side scripting languages : Java script, VB script.

Server Side Scripting

 Server side scripting is used to create dynamic pages based a number of conditions

when the users browser makes a request to the server.

 Server executes server-side scripts to send out a page but it does not execute client-

side scripts.

 Server side scripting is used to connect to the databases that reside on the web

server.

 Server side scripting can access the file system residing at the web server.

 Server side scripting can‘t be blocked by the user.

 Examples of Server side scripting languages : PHP, JSP, ASP, ASP.Net, Ruby, Perl

JSP versus java script

Sno. JSP Java script

1. It is executed by the server which

hosts the site

It is executed by the browser on our local

machine.

2. It is server side scripting which enables

us to write code in java and do perform

database interaction etc.

It is client side scripting language which is

used to interact with the client at front end

ie browser.

3. JSP uses full java technology Java script uses little java technology

Advantages of JSP

 Easy to maintain and code.

 High Performance and Scalability.

 JSP is built on Java technology, so it is platform independent.

 It is more convenient to write and modify the code

 JSP programming is easy to learn and easy to implement for Non-Java programmers

also.

 JSP programming eliminates the repeated deployment problems

JSP programming environment provides page compilation automatically.

Disadvantages of JSP

 Java knowledge is necessary to use JSP effectively.

 It is difficult to trace errors occurred in JSP pages.

 Database connectivity is not as easy as it should be.

It needs servlet engine

 Client and server responsibilities

Client

A client is a piece of computer hardware or software that accesses a service made

available by a server.

Server

A server is a computer program that provides services to other computer programs

(and their users) in the same or other computers.

Client responsibilities

1. Client initiates the request to the server for a resource.

2. After that request, it waits for the reply from the client.

3. It receives the reply form the server

4. It can request to more than one service at a time

5. It can interact with the end user using graphical user interface.

Server responsibilities

1. Server never initiates a request or any activity.

2. It replies only for the request from connected more than one clients.

3. It can install/uninstall application and transfer data to client systems remotely.

 Installing and configuring Tomcat server

Step 1: Installation of JDK: Don't forget to install JDK on your system (if not installed)

because any tomcat requires the Java 1.5 (Java 5) and Java 1.6 (Java 6) and then set the

class path (environment variable) of JDK.

Step 2: Setting the class path variable for JDK

The other way of setting the class path variable is:

First right click on the MyComputer->properties->Advanced->EnvironmentVariables-

>Classpath.

Set bin directory path of JDK in the path variable.

Step 3: Here we are exploring the installation process by using the .exe file. The directory

C:\apache-tomcat-6.0.10 is the common installation directory as it is pre-specified C:\ as the

top-level directory. First unpack the zipped file and simply execute the .exe file.

The above shown screen shot is the first one shown in the installation process. Just click on
the Next button to proceed the installation process.

click "I Agree" button to continue the installation process.

Click next to go with the default components choosen.

Now choose the port number on which you want to run the tomcat server. Tomcat uses the

port number 8080 as its default value. Choose the user name and password as per your

convenience.

e.g While using the port number 8080, give the following request in the address bar as:

Default Port: http//localhost:8080/index.jsp

Note that we do no need to specify any port number in the URL.

Now click on the Next button to proceed the installation process.

The installation process shows the above screen as the next window. This window asks for
the location of the installed Java Virtual Machine. Browse the location of the JRE folder and
click on the Install button. This will install the Apache tomcat at the specified location.

To get the information about installer click on the "Show details" button.

After completion of installation process it will display the window like the above one.

On clicking at Finish button, a window like the above one will display a message printed on
the window given below.

After successfully installing, a shortcut icon to start the tomcat server appears in the icon tray
of the task bar as shown above. Double clicking the icon, displays the window of Apache
Manager for Tomcat. It will show the "Startup type" as manual since we have changed the
destination folder for tomcat during the installation process. Now we can configure the other
options like "Display name" and "Description" .We can also start, stop and restart the service
from here.

If installation process completes successfully then a window as shown below will appear.

 JSP Architecture

The web server needs a JSP engine ie. container to process JSP pages. The JSP

container is responsible for intercepting requests for JSP pages.

A JSP container works with the Web server to provide the runtime environment and other

services a JSP needs

A typical request / response phase of a JSP is defined below

a) Request is initiated for a jsp file by client using browser

b) Webs server (JSP engine) loads the JSP file and translate the JSP file into a java code .

The Generated Java code will be a Servlet.

c) Once Servlet (Java code) is generated, JSP engine compiles the servlet. Any compilation

errors will be detected in this phase.

d) Now servlet class is loaded by the container and executes it.

e) JSP Engine sends the response back to client.

Translation and compilation phase is done only when

a) First request came for the jsp file

b) The generated servlet is older than the JSP file. This is the case when JSP file is

modified

 Life Cycle of a JSP Page

The steps given below gives the life cycle of a JSP page.

The client requests t he web server which contains different types of web pages such as

SAP,JSP etc.

Web server recognizes the request. If the request is for JSP page, it is directed to the

servlet engine.

Servlet engine directs it to the JSP engine.

JSP engine process the JSP pages and sends back the response to web server through

servlet.

The web server responses the client with the needed page.

 JSP vs Servlets

JSP Servlets

JSP is a webpage scripting language

that can generate dynamic content.

Servlets are Java programs that are already

compiled which also creates dynamic web

content.

JSP run slower compared to Servlet

as it takes compilation time to convert

into Java Servlets.

Servlets run faster compared to JSP.

The advantage of JSP programming

over servlets is that we can build

custom tags which can directly call

Java beans.

There is no such custom tag facility in servlets.

JSP is document centric Servlet is like programs.

 JSP vs Asp.NET

ASP.NET is an open-source server-side web application framework designed for web

development to produce dynamic web pages. It was developed by Microsoft to allow

programmers to build dynamic web applications.

 Both are designed to create interactive (GUI based) web pages for web based

applications.

 JSP and ASP support application development and deployment faster and easier.

 JSP and ASP are both server side scripting languages

JSP is from Sun Microsystems while ASP is from Microsoft

ning html comment tag

ng html comment tag

 ASP costs money while JSP is free.

 ASP code is interpreted while JSP code is compiled at run time

 JSP code can run faster than ASP if there are fewer changes

 Majority of Windows users use ASP while users of open source operating systems
like Linux use JSP among others.

 Jsp is secured and Asp is not secured

 JSP support only java and supports VB Script, Jscript

List of JSP servers

The most commonly used JSP servers are

 Apache tomcat

 Web logic

 J2EE server

 Apache HTTP server

 Netscape Server

 IIS Server

 JSP Elements

 Comments

 Comments are explanations included in a JSP program for better understanding.
These will not be executed.

 In JSP two types of comments are allowed in the JSP page. They are

 HTML Comments

 Hidden Comments

 <!-- comment --> is not a JSP comment. This is HTML comment.

1. HTML Comments

HTML comments are explanation included in a HTML part of the JSP page. These
comments will not be displayed on the page. But this can be viewed in the source.

Syntax

Where

<! - Ope

> - Closi

<% - Scriplet expression Opening tag

<!... valid comments….>
(or)

<!... valid comments….>
[<%=expression%>]

%> - Scriplet expression Closing tag

[<%=expression%>] is optional one

Example

 <%-- This is a JSP comment--%>

 <!—This is a HMTL comment-->

2. Hidden Comments

A comment that documents the JSP page but is not sent to the client. The JSP engine

ignores a hidden comment, and does not process any code within hidden comment tags. A

hidden comment is not sent to the client. The hidden comment is useful when which want to

hide or "comment out" part of our JSP page.

It use any characters in the body of the comment except the closing --%>

combination.

Syntax

<%-- comment --%>

Examples

<%@ page language="java" %>

<html>

<head><title>A Hidden Comment </title></head>

<body>

<%-- This comment will not be visible to the client in the page source --%>

</body>

</html>

 Directives

Directives are prewritten files in JSP. The jsp directives are a message that tells the

web container how to translate a JSP page into the corresponding servlet.

There are three types of directives:

1. Page directive

2. Include directive

3. Taglib directive

 The directives must begin with <%@ and end with%>.

Directives are used to design the entire JSP page.

Syntax

<%@ page attribute1="value1"
attribute2="value2‖, attributen="value n" %>

1. Page directive.

The page directive defines attributes that apply to an entire JSP page.

Attributes of JSP page directive

The following are the attributes of the page directives.

 import

 extends

 info

 buffer

 language

 isThreadSafe

 autoFlush

 session

 errorPage

 isErrorPage

1) import

The import attribute is used to import class, interface or all the members of a package. It is

similar to import keyword in java class or interface.

2) extends

The extends attribute defines the parent class that will be inherited by the generated servlet.

It is rarely used.

3) info

Info attribute simply sets the information of the JSP page which is retrieved later by using

getServletInfo() method of Servlet interface.

4) buffer

The buffer attribute sets the buffer size in kilobytes to handle output generated by the JSP

page. The default size of the buffer is 8Kb.

<%@ directive attribute="value" %>

5) language

The language attribute specifies the scripting language used in the JSP page. The default

value is "java".

6) isThreadSafe

Servlet and JSP both are multithreaded. If we want to control this behavior of JSP page, we

can use isThreadSafe attribute of page directive. The value of isThreadSafe value is true. If

make it false, the web container will serialize the multiple requests, i.e. it will wait until the

JSP finishes responding to a request before passing another request to it.

7) errorPage

The errorPage attribute is used to define the error page, if exception occurs in the current

page, it will be redirected to the error page.

8) isErrorPage

The isErrorPage attribute is used to declare that the current page is the error page.

9) autoflush

The default value is true. To decide whether to clear the output buffer or not. If it is true, the

buffer will be cleaned automatically else an exception will be thrown when the buffer

overflows.

10) Session

The default value is true. It is used to extend the session of the JSP page to the bean

application used inside this page.

Example

<%@ page import="java.util.Date" %>

Today is: <%= new Date() %>

<%@ page info="welcome " %>

<%@ page buffer="16kb" %>

<%@ page errorPage="myerrorpage.jsp" %>

2. Include Directive

The include directive is used to include the contents of any resource it may be jsp file, html

file or text file. The include directive includes the original content of the included resource at

page translation time

syntax

<%@ include file="relativeURL" %>

<%@ taglib uri="uriofthetaglibrary" prefix="java class filename" %>

No blank space is allowed between % and @ symbol.

Where

 include file – Keywords

 relative URL – name of the web oriented application

This directive has only one attribute name file. In this the name of the web application to be

loaded in the JSP page is given. The web application file should not contain <body>,

</body>tags. This is because these tags get confused with same tags in JSP page.

Example

<%@ page into =‖JSP example‖%>

<html>

<body>

<%@ include file="header.html" %>

</body>

</html>

The file header.html will be included in the jsb file.

4. Taglib Directive

The JSP taglib directive is used to define a tag library that defines many tags. We use

the Tag Library Descriptor file to define the tags. In the custom tag section we will use this

tag so it will be better to learn it in custom tag.

Syntax

 Scripting Elements

Scripting elements are used to embed jsp codes directly into HTML page. The

following are the different scripting elements. They are

 Declarations

 Scriplets

 Expression

1. Declarations

Declarations are used to define variables or methods in the jsp file.

Syntax

<%! Variable or method declaration %>

where

<%! - Declaration Opening tag

%> - Declaration Closing tag

Declarations are used with java code in the jsp file. That is, it is used with JSP scriptlets or

expressions.

Example

<%!

String makeItLower(String data)
{

returndata.toLowerCase();
}

%>

2.Scriptlets

In JSP, java code can be written inside the jsp page using the scriptlet tag.

Syntax

<% java source code %>

The scriplet contains any number of valid java language statements only. Any text, HTML

tags or JSP elements must be outside the scriplet.

Example

<html>

<body>

<% System.out.print("welcome to jsp"); %>

</body>

</html>

3. Expressions

Expressions are used to dynamically calculate values in the JSP page.

Syntax

<%= statement %>

Where

<% - expression opening tag

%> - expression closing tag

The value of the expression is calculated and is automatically converted to string.

After conversion it is written to the out object. The expression must be a valid java

expression and should not terminate with a semicolon.

If the expression has more than one part, it is evaluated from left to right.

Example

<html>

<body>

Current Time: <%= java.util.Calendar.getInstance().getTime() %>

</body>

</html>

Simple JSP page

The steps given below gives the procedure followed to create and run a JSP page

1. First Install java

2. Edit the jsp program using any editor(notepad)

3. Store the edited program using .jsp extension in the tomcat server directory..ie

C:\program\ApacheSoftwareFoundation\tomcat5.0\webapps\

Root\user directory\.jsp files

4. Open the internet explorer or mozila firebox web browser. In the address bar give

http://localhost:8080/. All the folders in Root directory will be listed.

5. Select the user directory where the .jsp files are stored. All the .jsp files will be listed.

6. Select the needed .jsp file to execute. The selected file will be executed.

Example

<html>
<body>

<%
int a=5, b=10, c=15, avg;

avg=(a+b+c)/z;
out.println(―Average:‖+avg);
%>

</body>
</html>

Implicit Objects

Implicit objects created by the web container. These objects are used to create JSP

pages. The users need not to declare these objects, but they are provided by the container

in the implementation class.

All the implicit objects are available only to scriplets and expressions only. The

following are the implicit objects.

 Request Object

 Response Object

 Page context Object

 Session Object

 Application Object

 Out Object

 Page Object

 Config Object

 Exception Object

1.Request Object

The request object is an instance of a javax.servlet.http.HttpServletRequest object.

Each time a client requests a page the JSP engine creates a new object to represent that

request.

The request object provides methods to get HTTP header information including form

data, cookies, HTTP methods etc.

public void_jspService(HttpServletRequest request),

HttpServletRepsonse response) throws

IOException,Servlet Exception

Method Description

getRequestURL() This methods returns the full URL of the client which

request the JSP page

getCharacterEncoding() This method returns the character set in which the

page is encoded.

getServerName() This method returns the name of the computer on

which the server is running.

getServerPort() This method returns the port number used for

communication with the server

getRemoteHost() This method returns the name of the computer which

requests the server

getQueryString() This method returns the query portion of the URL after

the question mark.

getMethod() This method returns the method used for the request.

getRemoteUser() This method returns the name of the logged user.

2. Response Object

The response object is an instance of a javax.servlet.http.HttpServletResponse object.

Just as the server creates the request object, it also creates an object to represent the

response to the client.

The response object also defines the interfaces that deal with creating new HTTP

headers. Through this object the JSP programmer can add new cookies or date stamps,

HTTP status codes etc.

syntax

4. Session object

A session is defined as a series of related interaction between a single client and

the server. A session object is created on the server. It is an unique identifier and is called

session id. This id is given to the client for communicating with the server. If the user is

accessing a site having more than one JSP or servlet pages, the same session id is shared

among all the page.

Method Description

long getCreationTime This method returns the time when the session was

created

string getId() This method returns the unique identifier assigned to

the session.

long getLastAccessedTime() This method returns the time when the user sent a last

request associated with this session.

Void setMaxInactiveInterval(int

interval)

This method is used to give the maximum length of time

in seconds that the servlet engine keeps the session

open if no user requests have been made.

void setMaxInactiveInterval() This method returns the maximum time interval in

seconds that the servlet engine keeps this session

open between client requests.

boolean isNew(0 This method returns true if a new session was created,

but client has not joined.

pageContext=_jspFactory.getPageContext(this,request

,response, ―errorpage.jsp‖,true,8192,true)

5. Application Object

JSP application contains more than one web pages. For each web page an

application object is created to allocate memory during execution. This object is an instance

of Javax.servlet.htp.HttpSession

6. Out Object

The out implicit object is an instance of a javax.servlet.jsp.JspWriter object and is

used to send content in a response.

Method Description

out.print(dataType dt) This method is used to print a data type value.

out.println(dataType

dt)

This method is used to Print a data type value then

terminate the line with new line character.

out.flush() This method is used to Flush the stream.

7. Page Object

This object is an actual reference to the instance of the page. It contain the details of

the current page. It can be thought of as an object that represents the entire JSP page.

8. Config Object

The config object is an instantiation of javax.servlet.ServletConfig and is a direct

wrapper around the ServletConfig object for the generated servlet. Config Implicit object is

used for getting configuration information for a particular JSP page.

9. Exception Object

The exception object is a wrapper containing the exception thrown from the previous

page. It is typically used to generate an appropriate response to the error condition.

Scope Application

Scope

 A JSP object created using the ‗application‘ scope can be accessed from any pages
across the application.

 The JSP object is bound to the application object. Implicit object application has the
‗application‘ scope.

Session Scope

 ‗session‘ scope means, the JSP object is accessible from pages that belong to the

same session from where it was created.

 The JSP object that is created using the session scope is bound to the session

object. Implicit object session has the ‗session‘ scope.

Request

 A JSP object created using the ‗request‘ scope can be accessed from any pages that

serves that request. More than one page can serve a single request.

 The JSP object will be bound to the request object. Implicit object request has the

‗request‘ scope.

Summary

 JSP technology is used to create dynamic web applications.

 JSP pages are easier to maintain then a Servlet.

 JSP does not require additional files like, java class files, web.xml etc

 Any change in the JSP code is handled by Web Container (Application server like

tomcat), and doesn't require re-compilation.

 Client side scripting is used to validate the data send by the client to the server.

 Server side scripting is used to create dynamic pages based a number of conditions

when the users browser makes a request to the server.

 Server side scripting can‘t be blocked by the user.

 Client initiates the request to the server for a resource.

 Server never initiates a request or any activity.

 Comments are explanations include in a JSP program for better understanding.

These will not be executed.

 In Jsp two types of comments are allowed in the Jsp page. They are i) HTML

comments ii) Hidden Comments

 HTML comments are explanation included in a html part of the JSP page. These

comments will not be displayed on the page.

 The JSP engine ignores a hidden comment, and does not process any code within

hidden comment tags

 Directives are prewritten files in JSP.

 The jsp directives are a message that tells the web container how to translate a JSP

page into the corresponding servlet.

 The page directive defines attributes that apply to an entire JSP page.

 The import attribute is used to import class, interface or all the members of a

package.

 The extends attribute defines the parent class that will be inherited by the generated

servlet.It is rarely used

 Info attribute simply sets the information of the JSP page which is retrieved later by

using getServletInfo() method of Servlet interface

 The buffer attribute sets the buffer size in kilobytes to handle output generated by the

JSP page.

 The language attribute specifies the scripting language used in the JSP page

 Servlet and JSP both are multithreaded.

 The errorPage attribute is used to define the error page

 The isErrorPage attribute is used to declare that the current page is the error page

 The autoflush attribute is used to clear the output buffer.

 The Session attribute is used to extend the session of the JSP page to the bean

application used inside this page

 The include directive is used to include the contents of any resource it may be jsp

file, html file or text file.

 The JSP taglib directive is used to define a tag library that defines many tags.

 Scripting elements are used to embed jsp codes directly into HTML page.

 Declarations are used to define variables or methods in the jsp file

 In JSP, java code can be written inside the jsp page using the scriptlet tag.

 Expressions are used to dynamically calculate values in the JSP page.

 Implicit objects created by the web container

 Implicit objects are used to create JSP pages.

 The request object passes the client request to the JSP page for processing.

 The response object sends back the response generated by the server back to the

client

 The page context object contains details about the page context for a particular page.

 A session object is defined as a series of related interaction between a single client

and server.

 A session object is created on the server.

 JSP application contains more than one pages.

 Page object is an actual reference to the instance of the page.

 Config Implicit object is used for getting configuration information for a particular JSP

page.

 Exception Object is used to generate an appropriate response to the error condition.

Review Questions

PART – A

Define Client side and Server side scripting

Give the advantages of JSP

List out the types of JSP Servers.

Define: Comments

What are the two types of Comments?

Define: Directives

What are implicit objects?

List out the three types of implicit objects.

Define: Session Object

Define: Exception Object

PART – B

1. Give the difference between JSP and java script

2. What are the responsibilities of Client and server?

3. Write about HTML Comments.

4. What are the attributes of JSP page directives?

5. Define: scripting elements and list out different types of scripting elements.

6. Write about the methods of Session object.

PART – C

Explain the steps to installing JSP servers.

Explain the JSP architecture with a neat diagram

Discuss about the life cycle of a JSP page.

Explain the steps to create a JSP page.

List and explain the different types of directives

Discuss about different types of scripting elements

Explain the following implicit objects a)request b) Session c) application d)page

UNIT-5

JSP PROGRAMS & DATABASE ACCESS

Objectives :

At end the this unit, students can

Define mysql

Define jdbcodbc driver

 Create connection and statement in mysql

 Define executeUpdate() method

 Define executeQuery() method

 Write simple projects

 INTRODUCTION

JSP technology is used to create dynamic web applications. JSP pages are easier to

maintain than a Servlet. JSP pages are opposite of Servlets as a servlet adds HTML code

inside Java code, while JSP adds Java code inside HTML using JSP tags. Everything a

Servlet can do, a JSP page can also do it.

 WRITING SIMPLE JSP PROGRAMS

 Write a simple JSP program to convert entered text into uppercase

<html>

<body>

<%

String s=‖web programming‖;

String s1=s.toUpperCase();

Out.println(―converted uppercase text is :‖+s1);

%>

</body>

</html>

Output:

Converted uppercase text is: WEB PROGRAMMNG

 Write a JSP program to find the maximum of three numbers

<html>

<body>

<%

int a=40,b=27,c=80;

if(a>b)

{

if(a>c)

out.println(―BIG=‖+a);

else

out.println(―BIG=‖+c);

}

else

{

if(b>C)

out.println(―BIG=‖+b);

else

out.println(―BIG=‖+c);

}

%>

</body>

</html>

Output:

BIG=80

 Write a program to add two numbers

<html>

<body>

<%

int a=20,b=30,c;

c=a+b;

out.println(―the sum is:‖+c);

%>

</body>

Create table table_name (column1 datatype, column2 datatype, column3 datatype,…);

</html>

Output:

the sum is:50

 MYSQL

MySQL is the most popular Open Source Relational SQL database management system.

MySQL is one of the best RDBMS being used for developing web-based software

applications.

The MySQL database has become the world's most popular open source database because

of its consistent fast performance, high reliability and ease of use. It's used in more than 6

million installations ranging from large corporations to specialized embedded applications on

every continent in the world.

 Creating MySQL Tables

The CREATE TABLE statement is used to create a table in MySQL.

The table creation command requires:

Name of the table

Names of fields

Definitions for each field

Syntax:

The following example creates a table called "student" that contains four columns: name,
regno, dept and year:

Example

Create table student(name char(15), trgno number(5), dept char(25), year number(4));

 Creating Records

The INSERT INTO statement is used to create new records in a table.

It is possible to write the INSERT INTO statement in two ways.

First method

The first way specifies both the column names and the values to be inserted. In this
method, values for all columns are need not to be given.

INSERT INTO tablename (column1, column2, column3) VALUES (value1, value2, value3);

INSERT INTO table_name VALUES (value1, value2, value3, ...);

<sql:setDataSource

var="<string>"

scope="<string>"

dataSource="<string>"

driver="<string>"

url="<string>"

user="<string>"

password="<string>"/>

Syntax:

Example:

INSERT INTO student (name, regno, dept) VALUES ('raja', 1542, 'EEE');

Here, out of four columns, only 3 values are given.

Second method:

In the second method, column names are not mentioned, but values for all columns should
be given.

Syntax:

Example:

INSERT INTO student VALUES ('raja', 1542, 'EEE', 2016);

Here, values for all columns are given.

Data Source

5.2.3.1<sql:setDataSource> Tag

The <sql:setDataSource> creates a datasource to connect to a database. A datasource

creates a way to communicate with the database server. We use datasource to query, insert,

update or delete information from the databases.

Syntax

getConnection()

JSP <sql:setDataSource> Tag has following attributes:

1. driver Attribute: Specifies the driver to connect database. For each database there is a
separate driver.

2. url Attribute: Specifies the location of the database.

3. var Attribute: Specifies the variable which holds the dataSource once it is created.

4. user Attribute: Specifies the user you already created to access database.

5. password Attribute: Specifies the password for the user you already assigned to access
database.

 JDBC-ODBC Bridge

JDBC drivers are used to open database connections and to interact with it by sending SQL

or database commands then receiving results with Java. JDBC Bridge is used to access

ODBC drivers installed on each client machine. ODBC requires configuring on your system a

Data Source Name (DSN) that represents the target database.

At the beginning, most databases only supported ODBC access but now this type of driver is

recommended only for experimental use or when no other alternative is available. The

following figure (Fig 5.1) explain the architecture of JDBC-ODBC Bridge

 Creating connection

Database can be accessed only after creating connection object. Before creating

connection a driver must be loaded and registered.

The general function used to create connection is

DriverManager provides three methods for creating connections:

 getConnection(String url)

 getConnection(String url, String userID, String password)

 getConnection(String url, Properties prop)

The driver manager maintains a list of registered drivers. When its getConnection() method

is invoked, it checks each driver whether it will accept the specified URL. The driver

manager do this by calling the driver‘s connect() method, which returns null if the driver

cannot accept the URL or an active Connection object if it accept the URL.

 Creating statement

The SQL language consists of statements that create, manipulate, and extract data

from a relational database. JDBC provides an object-oriented representation of these SQL

statements. This representation is called the java.sql.Statement interface. Statement objects

send SQL commands to a database, which can be any of the following types:

 A data definition command such as CREATE TABLE or CREATE INDEX

 A data manipulation command such as INSERT or UPDATE

 A SELECT statement for performing a query

Data manipulation commands return a count of the number of rows modified, whereas a

SELECT statement returns a set of rows known as a result set.

The Statement interface has two specialized sub interfaces:

 Prepared Statement - It uses precompiles SQL

 Callable Statement -It invokes stored procedures.

 Statement

The basic interface for creating a statement is java.sql.Statement. It is obtained from the

connection object with Connection.createStatement().

Example:

Connection con = null;

try {

con = DriverManager.getConnection(URL);

Statement stmt = con.createStatement();

...

stmt.close();

}

finally {

if (con != null)

con.close();

}

Once a statement is created, it can be used to execute commands. The following four

methods are used to execute commands

 executeUpdate

 executeQuery

execute

 executeBatch.

 executeUpdate() method

executeUpdate() method can be used with the SQL INSERT, UPDATE, or DELETE

statements, or with data definition statements such as CREATE TABLE.

Example

The program to count the number of rows updated is as follows.

import java.sql.*;

public class StatementUpdateExample {

public static void main(String... arg) {

Connection con = null;

Statement stmt = null;

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver ");

// getting connection

con = DriverManager.getConnection ("jdbc:odbc:MyDataSource","user","pass");

System.out.println("Connection established successfully!");

stmt = con.createStatement();

//execute update query

int numberOfRowsUpdated = stmt.executeUpdate("UPDATE EMPLOYEE "

+ "set NAME='ravi' where ID=2 ");

System.out.println("numberOfRowsUpdated=" + numberOfRowsUpdated);

} catch (ClassNotFoundException e) {

e.printStackTrace();

} catch (SQLException e) {

e.printStackTrace();

}

finally{

try {

if(stmt!=null) stmt.close(); //close Statement

if(con!=null) con.close(); // close connection

} catch (SQLException e) {

e.printStackTrace();

}

}

}

}

After executed, the program prints ―1 rows updated‖.

 executeQuery() method

executeQuery() method is used to execute an SQL SELECT statement and to return a result

set.

Example:

<%@page import="java.sql.DriverManager"%>

<%@page import="java.sql.ResultSet"%>

<%@page import="java.sql.Statement"%>

<%@page import="java.sql.Connection"%>

<%

String driverName = "com.mysql.jdbc.Driver";

String connectionUrl = "jdbc:mysql://localhost:3306/";

String dbName = "naulej";

String userId = "root";

String password = "root";

try {

Class.forName(driverName);

} catch (ClassNotFoundException e) {

e.printStackTrace();

}

Connection connection = null;

Statement statement = null;

ResultSet resultSet = null;

%>

<h2 align="center">Select query in

JSP</h2>

<table align="center" cellpadding="4" cellspacing="4">

<tr>

</tr>

<tr bgcolor="#008000">

<td>Id</td>

<td>Name</td>

<td>Address</td>

<td>Destination </td>

<td>Salary</td>

<td>DateOfJoin</td>

</tr>

<%

try {

connection = DriverManager.getConnection(

connectionUrl + dbName, userId, password);

statement = connection.createStatement();

String sql = "SELECT * FROM employeedetails";

resultSet = statement.executeQuery(sql);

while (resultSet.next()) {

%>

<tr bgcolor="#8FBC8F">

<td><%=resultSet.getString("id")%></td>

<td><%=resultSet.getString("name")%></td>

<td><%=resultSet.getString("address")%></td>

<td><%=resultSet.getString("destination")%></td>

<td><%=resultSet.getString("salary")%></td>

<td><%=resultSet.getString("dateOfJoin")%></td>

</tr>

<%

}

} catch (Exception e) {

e.printStackTrace();

}

%>

</table>

Output

 Select Operation

Select operation is used to select record in the database. SELECT statement is used

to do this operation

Example:

<%@ page import="java.io.* ,java.util.* ,java.sql.* "%>

<%@ page import="javax.servlet.http.* ,javax.servlet.* " %>

<%@ taglib uri="http://java.sun.com /jsp/jstl/core" prefix="c"%>

<%@ taglib uri="http://java.sun.com /jsp/jstl/sql" prefix="sql"%>

<html>

<head>

<title>SELECT Operation</title>

</head>

<body>

<sql:setDataSource var="snapshot" driver="com .mysql.jdbc.Driver"

url="jdbc:mysql://localhost/TEST"

user="root" password="pass123"/>

<sql:query dataSource="$ {snapshot}" var="result">

SELECT * from Employees;

</sql:query>

<table border="1" width="100%">

<tr>

<th>Em p ID</th>

<th>First Nam e</th>

<th>Last Nam e</th>

<th>Age</th>

</tr>

<c:forEach var="row" item s="$ {result.rows}">

<tr>

<td><c:out value="$ {row.id}"/></td>

<td><c:out value="$ {row.first}"/></td>

<td><c:out value="$ {row.last}"/></td>

<td><c:out value="$ {row.age}"/></td>

</tr>

</c:forEach>

http://java.sun.com/
http://java.sun.com/

</table>

</body>

</html>

The Output is

Emp ID First Name Last Name Age

100 Ram Kumar 18

102 John Peter 25

103 Abdullah Khan 30

 Insert Operation

Insert operation is used to insert a new record in the table. INSERT statement is used to do

this operation

Example:

<%@ page import="java.io.* ,java.util.* ,java.sql.* "%>

<%@ page import="javax.servlet.http.* ,javax.servlet.* " %>

<%@ taglib uri="http://java.sun.com /jsp/jstl/core" prefix="c"%>

<%@ taglib uri="http://java.sun.com /jsp/jstl/sql" prefix="sql"%>

<html>

<head>

<title>JINSERT Operation</title>

</head>

<body>

<sql:setDataSource var="snapshot" driver="com.mysql.jdbc.Driver"

url="jdbc:mysql://localhost/TEST"

user="root" password="pass123"/>

<sql:update dataSource="$ {snapshot}" var="result">

INSERT INTO Employees VALUES (104, 2, 'Gowtham', 'Bhudha');

</sql:update>

http://java.sun.com/
http://java.sun.com/

<sql:query dataSource="$ {snapshot}" var="result">

SELECT * from Employees;

</sql:query>

<table border="1" width="100%">

<tr>

<th>Em p ID</th>

<th>First Nam e</th>

<th>Last Nam e</th>

<th>Age</th>

</tr>

<c:forEach var="row" items="$ {result.rows}">

<tr>

<td><c:out value="$ {row.id}"/></td>

<td><c:out value="$ {row.first}"/></td>

<td><c:out value="$ {row.last}"/></td>

<td><c:out value="$ {row.age}"/></td>

</tr>

</c:forEach>

</table>

</body>

</html>

The Output is:

Emp ID First Name Last Name Age

100 Ram Kumar 18

102 John Peter 25

103 Abdullah Khan 30

104 Gouwtham Bhudha 5

 Update Operation

Update operation is used to update the record in the table. UPDATE statement is

used to do this operation

Example:

<%@ page import="java.io.* ,java.util.* ,java.sql.* "%>

<%@ page import="javax.servlet.http.* ,javax.servlet.* " %>

<%@ taglib uri="http://java.sun.com /jsp/jstl/core" prefix="c"%>

<%@ taglib uri="http://java.sun.com /jsp/jstl/sql" prefix="sql"%>

<html>

<head>

<title>UPDATE Operation</title>

</head>

<body>

<sql:setDataSource var="snapshot" driver="com .mysql.jdbc.Driver"

url="jdbc:mysql://localhost/TEST"

user="root" password="pass123"/>

<c:set var="empId" value="102"/>

<sql:update dataSource="$ {snapshot}" var="count">

UPDATE Employees SET last = 'Sri'

<sql:param value="$ {em pId}" />

</sql:update>

<sql:query dataSource="$ {snapshot}" var="result">

SELECT * from Employees;

</sql:query>

<table border="1" width="100%">

<tr>

<th>Em p ID</th>

<th>First Nam e</th>

<th>Last Nam e</th>

http://java.sun.com/
http://java.sun.com/

<th>Age</th>

</tr>

<c:forEach var="row" items="$ {result.rows}">

<tr>

<td><c:out value="$ {row.id}"/></td>

<td><c:out value="$ {row.first}"/></td>

<td><c:out value="$ {row.last}"/></td>

<td><c:out value="$ {row.age}"/></td>

</tr>

</c:forEach>

</table>

</body>

</html>

The Output is

Emp ID First Name Last Name Age

100 Ram Kumar 18

102 John Peter 25

103 Abdullah Khan 30

104 Gouwtham Sri 5

 Delete Operation

Delete operation is used to delete the record in the table. DELETE statement is used to do

this operation

Example

<%@ page import="java.io.* ,java.util.* ,java.sql.* "%>

<%@ page import="javax.servlet.http.* ,javax.servlet.* " %>

<%@ taglib uri="http://java.sun.com /jsp/jstl/core" prefix="c"%>

<%@ taglib uri="http://java.sun.com /jsp/jstl/sql" prefix="sql"%>

http://java.sun.com/
http://java.sun.com/

<html>

<head>

<title>DELETE Operation</title>

</head>

<body>

<sql:setDataSource var="snapshot" driver="com.mysql.jdbc.Driver"

url="jdbc:mysql://localhost/TEST"

user="root" password="pass123"/>

<c:set var="empId" value="103"/>

<sql:update dataSource="$ {snapshot}" var="count">

DELETE FROM Em ployees WHERE Id = ?

<sql:param value="$ {em pId}" />

</sql:update>

<sql:query dataSource="$ {snapshot}" var="result">

SELECT * from Em ployees;

</sql:query>

<table border="1" width="100%">

<tr>

<th>Em p ID</th>

<th>First Nam e</th>

<th>Last Nam e</th>

<th>Age</th>

</tr>

<c:forEach var="row" item s="$ {result.rows}">

<tr>

<td><c:out value="$ {row.id}"/></td>

<td><c:out value="$ {row.first}"/></td>

<td><c:out value="$ {row.last}"/></td>

<td><c:out value="$ {row.age}"/></td>

</tr>

</c:forEach>

</table>

</body>

</htm l>

The Output is

Emp ID First Name Last Name Age

100 Ram Kumar 18

102 John Peter 25

103 Abdullah Khan 30

DEVELOPING A MINI PROJECT USING HTML5, CSS, JSP TO MANIPULATE DATA IN

MYSQL DATABASE.

Project Description:

This project ― Product Stock Management System‖ is a web-based application. The

main objective of this project is to manage a stock for a company or organization, and take

care of maintaining the stock of the products. This project includes the modules for the

following operation :

1. Adding new product to the stock

2. Updating / Deleting the product from stock

3. Getting report of the stock

Tables used :

The table named ―product‖ is used here. It contains the following fields :

1. Product ID

2. Product Name

3. Quantity

Forms used :

S.No Forms Name Description

1.
Homepage

This form display main page with three links for

data manipulation

2.
Insertform

This form receives input from the user and

stored in the stock.

3.
Datamanipulateform

This form contains update and delete link for

each record in the stock

4.
Updateform

This form is used to update the stored data in

the stock

5.
Deleteform

This form is used to Delete particular record

from the stock

6.
Productreportform

This form display all the products available in

the stock

Programs to manipulate data :

The following jsp modules are used along with above forms for input and output operations :

S.No JSP Modules Operations

1. Insert.jsp This is used along with the insert form.

2. Datamanipuate.jsp This is used along with the datamanipulateform

3. Update.jsp This is used along with the updateform

4. Delete.jsp This is used along with the delete form

5. Productreport.jsp This is used along with the Productreportform

Software Required:

 ApacheTomcat 7 server

 MySql database server.

Starting MySql database server:

To start the mysqld server from the command line, enter the command prompt and enter this

command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqld"

Starting Apache tomcat Server:

 Open any browser

In the address bar type http://localhost:8080

The following page will be appear

Database Creation

fig5.2

fig 5.3

In Figure(fig5.3) mysql database and table is created. Database can be created using the

following steps

 Open Mysql database

 Type ―create database loginjdbc;‖ and press enter

 Now the database is created

 Type ―Use loginjdbc:‖ and press enter

Table Creation

The table can be created using the following steps

 Open Mysql database

 Type the below query and press enter

CREATE TABLE `product` (`id` int(10) unsigned NOT NULL auto_increment,

`pname` varchar(45) NOT NULL,`quantity` int(10) unsigned NOT NULL,

PRIMARY KEY (`id`));

Inserting Records

For inserting record in a table,

 Open Mysql database

 Type the below query and press enter

INSERT INTO `product` (`id`,`pname`,`quantity`) VALUES

(1,'Mouse',50),

(2,'Keyboard',5),

(3,'Monitor',34);

Steps to run the modules

 Open any browser

 Type http://localhost:8080/homepage.jsp in the address bar.

 Press enter and the output will be displayed in the browser

 Now three links are displayed in the screen

 For insert a new record, click ―Inserting Record‖ link in the output screen.

 For update/delete a record click ―Updating/Deleting Record‖ link in the output screen.

 For view the stock report click ―Product Stock Report‖ link in the screen.

Module-I

In this module, we have created a home page(index.jsp). It has three links to manipulate the

data.

They are

 Inserting Record –It is used to insert a new record.

 Updating/Deleting record- It is used to modify and delete the data.

Product stock report - It is used to view all the products in the database.

Fig 5.4

homepage.jsp

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>
<html>
<head>
<h1 align=center> Mini Project Using Jsp & My Sql</h1>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>JSP Page</title>
</head>
<body>
<h1 align=center>Choose Option</h1>
<P align=center>
Inserting Record

Updating/Deleting Record

productstock report

</p>
</p>
</body>
</html>

Module II

Inserting Record:

In this module we have to insert a new record into the database. For inserting a

record we have to establish a connection between tomcat server and mySql database by

using JDBC.

Fig 5.5

 Click save button in the screen .Now the new record is saved in the database and
display the result as below fig 5.6

Fig 5.6

The following code (insertform.jsp) is used to get the values from the user and store data in
the database

Insertform.jsp

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<!DOCTYPE html>

<html>

http://java.sun.com/jsp/jstl/core

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>JSP Page</title>

</head>

<body>

<form action="insert.jsp" method="post">

<table border="0" cellspacing="2" cellpadding="5">

<thead>

<tr>

<th colspan="2">Purchase Product</th>

</tr>

</thead>

<tbody>

<tr>

<td><label>Product Name</label></td>

<td><input type="text" name="pname"/></td>

</tr>

<tr>

<td><label>Quantity</label></td>

<td><input type="text" name="qty"/></td>

</tr>

<tr>

<td><input type="submit" value="Save" /></td>

<td><input type="reset" value="reset"/></td>

</tr>

</tbody>

</table>

</form>

<c:if test="${not empty param.errMsg}">

<c:out value="${param.errMsg}" />

Go Back

</c:if>

<c:if test="${not empty param.susMsg}">

<c:out value="${param.susMsg}" />

Go Back

</c:if>

</body>

</html>

. The following code insert.jsp is used to establish connection and stores the values into the

database

Algorithm

 Create datasourse using <sql:setDataSource> tag before establishing database
connection.

 Use JDBC drivers for establishing connections.

 Insert query is used to insert data into the database.

 Get Product name and Quantity as input from the users.

insert.jsp

<%@ page import="java.io.*,java.util.*,java.sql.*"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql"%>

<html>

<head>

<title>JINSERT Operation</title>

</head>

<body>

<c:if test="${ empty param.pname or empty param.qty}">

<c:redirect url="insertform.jsp" >

<c:param name="errMsg" value="Please Enter Product and Quantity" />

</c:redirect>

</c:if>

<sql:setDataSource var="dbsource" driver="com.mysql.jdbc.Driver"

url="jdbc:mysql://localhost/loginjdbc"

user="root" password="pass123"/>

<sql:update dataSource="${dbsource}" var="result">

INSERT INTO product(pname, quantity) VALUES (?,?);

<sql:param value="${param.pname}" />

<sql:param value="${param.qty}" />

</sql:update>

<c:if test="${result>=1}">

 Congratulations ! Data inserted

successfully.

<c:redirect url="insertform.jsp" >

<c:param name="susMsg" value="Congratulations ! Data inserted

successfully." />

</c:redirect>

</c:if>

</body>

</html>

Module III

Updating/Deleting Records:

After clicking the updating/deleting record link in the home page. All records are

displayed with two links named ―update‖ and ―delete‖ for each row.

datamanipulate.jsp

<%@ page import="java.io.*,java.util.*,java.sql.*"%>

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/sql
mysql://localhost/loginjdbc

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql"%>

<html>

<head>

<title>SELECT Operation</title>

<script>

function confirmGo(m,u) {

if (confirm(m)) {

window.location = u;

}

}

</script>

</head>

<body>

<sql:setDataSource var="dbsource" driver="com.mysql.jdbc.Driver"

url="jdbc:mysql://localhost:3306/loginjdbc"

user="root" password="pass123"/>

<sql:query dataSource="${dbsource}" var="result">

SELECT * from product;

</sql:query>

<center>

<form>

<table border="1" width="40%">

<caption>Product List</caption>

<tr>

<th>Product ID</th>

<th>Product Name</th>

<th>Quantity</th>

<th colspan="2">Action</th>

</tr>

<c:forEach var="row" items="${result.rows}">

<tr>

<td><c:out value="${row.id}"/></td>

<td><c:out value="${row.pname}"/></td>

<td><c:out value="${row.quantity}"/></td>

<td><a href="update.jsp?id=<c:out value="${row.id}"/>">Update</td>

<td><a href="javascript:confirmGo('Sure to delete this record?','deletedb.jsp?id=<c:out
value="${row.id}"/>')">Delete</td>

</tr>

</c:forEach>

</table>

</form>

Go Home

</center>

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/sql

</body>

</html>

Update records

Updating records is used to modify the values that are already stored in the

database.

Fig 5.7

After Clicking the update button from the above figure (fig 5.7) the data are updated in the

database.

Updateform.jsp

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<%@ page import="java.io.*,java.util.*,java.sql.*"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql"%>

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>JSP Page</title>

</head>

<body>

<sql:setDataSource var="dbsource" driver="com.mysql.jdbc.Driver"

url="jdbc:mysql://localhost:3306/loginjdbc"

user="root" password="pass123"/>

<sql:query dataSource="${dbsource}" var="result">

SELECT * from product where id=?;

<sql:param value="${param.id}" />

</sql:query>

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/sql

<form action="updatedb.jsp" method="post">

<table border="0" width="40%">

<caption>Update Product</caption>

<tr>

<th>Product ID</th>

<th>Quantity</th>

</tr>

<c:forEach var="row" items="${result.rows}">

<tr>

<td><input type="text" value="${param.id}" name="id"/>

<input type="hidden" value="${row.pname}" name="pname"/></td>

<td><input type="text" value="${row.quantity}" name="qty"/></td>

<td><input type="submit" value="Update"/></td>

</tr>

</c:forEach>

</table>

Go Home

</form>

</body>

</html>

Update.jsp

Algorithm

 Create datasourse using <sql:setDataSource> tag before establishing database
connection.

 Use JDBC drivers for establishing connections.

 Update query is used to update data in the database.

Product ID and Quantity fields are used in the form to perform update operation.

Fig 5.8

After Updating records in the database the output will be as fig 5.8 and the complete code to

update the database is as follows

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<%@ page import="java.io.*,java.util.*,java.sql.*"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql"%>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>JSP Page</title>

</head>

<body>

<sql:setDataSource var="dbsource" driver="com.mysql.jdbc.Driver"

url="jdbc:mysql://localhost/loginjdbc"

user="root" password="pass123"/>

<sql:update dataSource="${dbsource}" var="count">

UPDATE product SET pname = ?, quantity=?

WHERE id='${param.id}'

<sql:param value="${param.pname}" />

<sql:param value="${param.qty}" />

</sql:update>

<c:if test="${count>=1}">

 Congratulations ! Data updated

successfully.

Go Home

</c:if>

</body>

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/sql
mysql://localhost/loginjdbc

</html>

Deleting records

The SQL DELETE Query is used to delete the existing records from a table.

Fig 5.9

When the below code delete.jsp is executed the above output (fig 5.9) is displayed

Algorithm

 Create datasourse using <sql:setDataSource> tag before establishing database
connection.

 Use JDBC drivers for establishing connections.

 Delete query is used to delete data in the database.

Delete.jsp

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<%@ page import="java.io.*,java.util.*,java.sql.*"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql"%>

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>JSP Page</title>

</head>

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/sql

<body>

<sql:setDataSource var="dbsource" driver="com.mysql.jdbc.Driver"

url="jdbc:mysql://localhost/loginjdbc"

user="root" password="pass123"/>

<sql:update dataSource="${dbsource}" var="count">

DELETE FROM product

WHERE id='${param.id}'

</sql:update>

<c:if test="${count>=1}">

 The file was deleted successfully.

Go Home

</c:if>

</body>

</html>

Module IV

Viewing Records:

In this module ―productstockreport.jsp‖ file contains coding for display all the records.

Algorithm

 Create datasourse using <sql:setDataSource> tag before establishing database
connection.

 Use JDBC drivers for establishing connections.

 Select query is used to display all the data in the database.

 Product ID.Product Name and Quantity are displayed in table format.

Fig 5.10

mysql://localhost/loginjdbc

Productstockreport.jsp

<%@ page import="java.io.*,java.util.*,java.sql.*"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql"%>

<html>

<head>

<title>SELECT Operation</title>

<script>

function confirmGo(m,u) {

if (confirm(m)) {

window.location = u;

}

}

</script>

</head>

<body>

<sql:setDataSource var="dbsource" driver="com.mysql.jdbc.Driver"

url="jdbc:mysql://localhost:3306/loginjdbc"

user="root" password="pass123"/>

<sql:query dataSource="${dbsource}" var="result">

SELECT * from product;

</sql:query>

<center>

<form>

<table border="1" width="40%">

<caption>Product List</caption>

<tr>

<th>Product ID</th>

<th>Product Name</th>

<th>Quantity</th>

</tr>

<c:forEach var="row" items="${result.rows}">

<tr>

<td><c:out value="${row.id}"/></td>

<td><c:out value="${row.pname}"/></td>

<td><c:out value="${row.quantity}"/></td>

</c:forEach>

</table>

</form>

Go Home

</center>

</body>

</html>

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/sql

Steps to check the records in mysql after run this project

 Open Mysql database

 Type ―Use loginjdbc:‖ and press enter

 Type the query ―Select * from Product;‖ and press enter.

 The complete database report is displayed as fig 5.11

Fig 5.11

Summary

 JSP technology is used to create dynamic web applications.

 MySQL is one of the best RDBMS being used for developing web-based software

applications

 The CREATE TABLE statement is used to create a table in MySQL.

 The <sql:setDataSource> creates a datasource object to connect to a database.

 url Attribute Specifies the location of the database.

 JDBC drivers are used to open database connections and to interact with it by

sending SQL or database commands then receiving results with Java.

 Database can be access only after creating connection. Before creating connection,

a driver must be loaded and registered.

 JDBC Bridge is used to access ODBC drivers installed on each client machine.

 The driver manager maintains a list of registered drivers.

 The SQL language consists of statements that create, manipulate, and extract data

from a relational database.

 Data manipulation commands return a count of the number of rows modified,

whereas a SELECT statement returns a set of rows known as a result set.

 The basic interface for creating a statement is java.sql.Statement.

 executeUpdate() method can be used with the SQL INSERT, UPDATE, or DELETE

statements, or with data definition statements such as CREATE TABLE.

 executeQuery() method is used to execute an SQL SELECT statement and to return

a result set.

 Select operation is used to select record in the database. SELECT statement is used

to do this operation

 Update operation is used to update the record in the table. UPDATE statement is

used to do this operation

 Delete operation is used to delete the record in the table. DELETE statement is used

to do this operation

Review Questions

Part A

1. Define : MySql.

2. What is the use of url attribures?

3. Write the general syntax to create a table.

4. Define : Statement.

5. Write the use of update operation?

6. What is the use of select operation?

7. Define CSS.

8. How to delete a record in the database?

Part B

How to create records in mysql?.

Write the jsp code to convert entered text into uppercase.

Briefly explain about connection.

Write about select operation in mysql.

Write about var and driver attributes.

Write short notes on creating statements.

What are the uses of JSP?

Part C

1. Write a jsp program to find maximum of three numbers

2. Explain about <sql:setDataSource> in detail.

3. Discuss about JdbcOdbcDriver with neat diagram.

4. Explain in detail about executeUpdate().

5. With an example, explain about insert operation.

6. Write about executeQuery() with example.

7. Write a jsp program to add two numbers.

8. With example explain about update operation.

9. Explain about delete operation with example.

10. Write a jsp code to manipulate data in mysql database using html and css.

	UNIT 1 INTERNET AND HTML
	Introduction to internet:
	History Of Internet (Evolution)
	Advantages
	Disadvantages
	Switching
	Switching can be categorized as:
	Dial-up Connection
	Dial-up connection uses either of the following protocols:
	Point to Point Protocol (PPP)
	ISDN
	Key points:
	ISDN Advantages
	ISDN Disadvantages
	DSL
	ASDL (Asymmetric digital subscriber line)
	Advantages Of ADSL
	Disadvantages of ADSL
	Cable TV Internet Connection
	Key Points:
	Leased lines.
	Analog lines
	Dedicated lines
	Satellite Internet Connection
	Wireless Internet Connection
	Key Points: (1)
	Modem
	Cable Modem
	Internet tools
	Web server
	Web Server Working
	Key Points
	Examples
	Domain name
	Domain Name System Architecture:
	Domain Names
	Domain Name Space
	Name Server
	Zones
	TYPES OF NAME SERVERS
	1.1.1.1.1
	PRIMARY SERVERS
	SECONDARY SERVER

	DNS Working
	Uniform Resource Locator (URL)
	URL Types
	ABSOLUTE URL
	RELATIVE URL

	Difference between Absolute and Relative URL
	Search Engine Components
	Web crawler
	Database
	Search Interfaces
	Search Engine Working
	Architecture:
	Search Engine Processing
	TEXT ACQUISITION
	TEXT TRANSFORMATION
	INDEX CREATION

	Query Process
	USER INTERACTION
	RANKING
	EVALUATION

	Examples (1)
	Architecture
	Starting Internet Explorer
	Accessing Web Page
	IP Addresses
	Class A Address
	Class C Address
	Internet Protocol version 4
	Internet Protocol v6 (IPv6)
	Internet Protocols TCP / IP
	FTP
	File Transfer Protocol (FTP)
	Active FTP and passive FTP compared
	HTTP
	TelNet:
	What is Telnet?
	Gopher
	WAIS
	GPRS
	EDGE (Enhanced Data for Global Evolution):
	2G, 2.5G, 2.75G, 3G, 4G
	Meaning of 3g spectrum
	Difference between 2G,3G and 4G
	1.2 Introduction to HTML
	Basic HTML Document
	HTML Tags
	HTML Document Structure
	The <!DOCTYPE> Declaration
	Headers Heading Tags
	Example:
	Formatting Tags:
	Example: (1)
	Italic Text:
	Example: (2)
	Example
	HTML Paragraphs
	Example (1)
	TT Tag:
	Output ;
	Strike Text
	Example (2)
	Monospaced Font:
	Example (3)
	BR TAG:
	EM Tag
	Example (4)
	Strong text
	Grouping Content
	Example (5)
	1.1.1.12.1 CONTENT ARTICLES

	Example (6)
	HR TAG
	HTML
	CSS
	PRE TAG
	Fonts Tag
	Set Font Size
	Example (7)
	Relative Font Size
	Setting Font Face
	Specify alternate font faces
	Setting Font Color
	Example (8)
	Example (9)
	Insert Image
	Example (10)
	Simple Image Insert
	Set Image Location
	Set Image Border
	HTML META TAG
	Adding Meta Tags to Your Documents
	Specifying Keywords
	Example (11)
	Hello HTML5! Document Description
	Example (12)
	Document Revision Date
	Document Refreshing
	Page Redirection
	Example (13)

	UNIT 2
	HTML5 and Advanced HTML :
	HTML5 Example
	Difference between HTML and HTML5
	Canvas elements
	Media elements:
	Browser Support
	Multimedia Formats
	Semantic and structural element
	What are Semantic Elements?
	New Semantic Elements in HTML5
	HTML5 <section> Element
	Example
	HTML5 <article> Element
	Example (1)
	Nesting <article> in <section> or Vice Versa?
	HTML5 <header> Element
	Example (2)
	HTML5 <footer> Element
	Example (3)
	HTML5 <nav> Element
	Example (4)
	HTML5 <aside> Element
	Example (5)
	HTML5 <figure> and <figcaption> Elements
	Example (6)
	Why Semantic Elements?
	Semantic Elements in HTML5
	New graphic elements : <canvas> and <svg>
	Canvas Examples
	Example (7)
	Draw a Line Example
	Draw a Circle:
	Draw a Text :
	HTML Canvas Can Draw Text
	HTML Canvas Can Draw Graphics
	HTML Canvas Can be Animated
	HTML Canvas Can be Interactive
	HTML Canvas Can be Used in Games
	Canvas Example
	Example (8)
	<svg> element What is SVG?
	<svg> tag
	SVG Circle Example
	Differences Between SVG and Canvas
	Comparison of Canvas and SVG
	Advanced HTML
	Links
	HTML Links - Syntax
	Example (9)
	Local Links
	Example (10)
	HTML Link Colors
	Example (11)
	HTML Links - The target Attribute
	Example (12)
	Example (13)
	HTML Links - Image as Link
	Example (14)
	HTML Links - Create a Bookmark
	Example (15)
	Example (16)
	External Paths
	Example (17)
	Example (18)
	Example (19)
	Summary
	Lists
	HTML Unordered Lists
	Example (20)
	
	
	The type Attribute
	Example (21)
	 (1)
	Example (22)
	<ul type="disc">
	 (2)
	Example (23)
	<ul type="circle">
	 (3)
	HTML Ordered Lists
	Example (24)
	
	
	The type Attribute (1)
	Example (25)
	<ol type="1">
	 (1)
	Example (26)
	<ol type="I">
	 (2)
	Example (27)
	<ol type="i">
	 (3)
	Example (28)
	<ol type="A">
	 (4)
	Example (29)
	<ol type="a">
	 (5)
	The start Attribute
	Example (30)
	<ol type="i" start="4">
	 (6)
	HTML Definition Lists
	• <dl> - Defines the start of the list
	• <dd> - Term definition
	Example (31)
	HTML
	HTTP
	HTML tables
	tr and td Tags
	Example (32)
	<table border="1">
	Cellpadding and Cellspacing Attributes
	Example (33)
	<table border="1" cellpadding="5" cellspacing="5">
	This will produce following result:
	Example (34)
	This will produce following result: (1)
	Example (35)
	<table border="1" bordercolor="green" bgcolor="yellow"><tr>
	Table Height and Width
	Example (36)
	<table border="1" width="400" height="150">
	Table Caption
	Example (37)
	Table Header, Body, and Footer
	Example (38)
	HTML frames
	Disadvantages of Frames
	Creating Frames
	Example (39)
	Example (40)
	The <frameset> Tag Attributes
	The <frame> Tag Attributes
	Browser Support for Frames
	Frame's name and target attributes
	Following is the content of menu.htm file
	HTML Forms
	<form action="Script URL" method="GET|POST"> form elements like input, textarea etc.
	Form Attributes
	HTML Form Controls
	Text Input Controls
	Single-line text input controls
	Attributes
	Password input controls
	Attributes (1)
	Multiple-Line Text Input Controls
	Example (41)
	Attributes (2)
	Checkbox Control
	Attributes (3)
	Radio Button Control
	Example (42)
	Attributes (4)
	Select Box Control
	Example (43)
	Attributes (5)
	File Upload Box
	Example (44)
	Attributes (6)
	Button Controls
	Example (45)
	Hidden Form Controls
	Example (46)
	COLGROUP
	Example (47)
	HTML <tbody>,</thead>&<footer>
	Example (48)
	This will produce following result: (2)
	<iframe>
	Example (49)
	Cascading Style Sheets (CSS)
	Example (50)
	This will produce following result: (3)
	External Style Sheet
	Example (51)
	This will produce following result: (4)
	Internal Style Sheet
	Example (52)
	This will produce following result: (5)
	Inline Style Sheet
	Example (53)
	This will produce following result: (6)
	What is CSS3?
	CSS3 modules
	@keyframes
	Example of key frames with left animation
	CSS3- Borders
	Border shorthand
	Syntax
	Values
	Formal syntax
	HTML (1)
	CSS
	Result
	CSS3 Backgrounds
	Background color
	Example (54)
	Background image
	Example (55)
	Background repeat
	Example (56)
	Background position
	Example:
	CSS3 - Web fonts
	Different web fonts formats
	Fonts description
	CSS3 - Multi columns
	Example (57)
	CSS3 - Text
	CSS3 Text Overflow
	Example (58)
	Example (59)
	CSS3 Word Wrapping
	Example (60)
	CSS3 Word Breaking
	Example (61)
	Formatting Text and Fonts
	CSS Font Families
	Font Family
	Example (62)
	Font Style
	Example (63)
	Font Size
	Set Font Size With Pixels
	Example (64)
	Set Font Size With Em
	Example (65)
	Font Weight
	Example (66)
	Font Variant
	Example (67)
	Text Indentation
	Word Spacing
	Example (68)
	Letter Spacing
	Example (69)
	Line Height
	Example (70)
	Example (71)
	Property Values
	CSS Colors
	Setting Color Property
	Color Names
	Example (72)
	Example (73)
	Example (74)
	Example (75)
	Background Properties
	Background Color
	Example (76)
	Example (77)
	Background Image
	Example (78)
	Background Repeat
	Background Attachment
	Background Position
	The Background Shorthand Property
	Exploring CSS Class and ID Attributes:
	Example: (1)
	The Type Selectors
	The Universal Selectors
	The Descendant Selectors
	The Class Selectors
	The ID Selectors
	The Child Selectors
	Styles can be applied to HTML elements with particular attributes. The style rule below will match all the input elements having a type attribute with a value of
	Multiple Style Rules
	Grouping Selectors
	h1 {
	}
	Multiple Shadows
	h1
	text-shadow: 0 0 3px #FF0000, 0 0 5px #0000FF;
	CSS3 BOX-SHADOW PROPERTY
	CSS Lists
	Different List Item Markers
	List - Shorthand property
	Styling List with Colors
	CSS Tables
	Basic CSS Table Structure
	Table Borders
	Example
	Collapse Table Borders
	Example (1)
	Let the borders collapse:
	Example (2)
	Single Border Around The Table:
	Example (3)
	The width and height Properties
	Horizontal Alignment
	Example (4)
	Vertical Alignment
	Example (5)
	Table Padding
	Example (6)
	Horizontal Dividers
	Example (7)
	Hoverable Table
	Example (8)
	Striped Tables
	Example (9)
	Table Color
	Example (10)
	Responsive Table
	Example (11)
	CSS Forms
	Styling Input Fields
	Example (12)
	Padded Inputs
	Example (13)
	Bordered Inputs
	Example (14)
	Example (15)
	Colored Inputs
	Example (16)
	Focused Inputs
	Input with icon/image
	Example (17)
	Animated Search Input
	Styling Textareas
	Example (18)

	UNIT-3 CLIENT SIDE SCRIPTING (JAVA SCRIPT)
	Objectives:
	JAVA SCRIPT BASICS
	Need of scripting Languages:
	Structure of java script programs
	</script>
	</html>
	HTML tags

	Variables and data types
	var name = value ;
	Life span of variable
	Local variable
	Example:
	Global Variable
	Data types
	Example: (1)
	JavaScript Types are Dynamic.
	Literals
	Operators
	1. Assignment operators
	Rules:
	2. Short hand assignment operators
	Example
	iv) Computational operators
	i) Binary operators:
	ii) Unary operator
	V) Logical Operator:
	Control Structure
	i) Conditional Statement:
	1. if statement
	Flow diagram
	2. if--else statement
	Flow diagram (1)
	3. switch statement
	Flow diagram (2)
	ii) Looping statement
	1. While structure
	Flow diagram (3)
	2. do-while loop
	Flow diagram (4)
	3. for statement
	Flow diagram (5)
	4. for-in statement
	Example (1)
	Break statement
	var i =0; while(i<6)
	break; i++;
	document.write(i); i=3
	Continue statement
	Example:
	Advantages of looping statements
	Object based programming and message boxes
	Functions
	Example
	Calling the function
	Return statement
	Example (1)
	Executing deferred scripts
	Three ways of calling deferred scripts
	Example (2)
	Objects
	General form to create objects.
	Document object
	i) Document object properties
	ii) Document object methods
	1. open()
	2. close()
	3. write()
	4. writeln()
	Simple programs
	Predefined objects
	1. Array object
	Syntax
	Syntax (1)
	Methods in array object
	Example (3)
	Output
	Output (1)
	Output (2)
	2. History object
	i) History objects properties
	ii) History objects methods
	a) back()
	Example (4)
	b) forward()
	Example (5)
	c) go()
	Example (6)
	Example (7)
	3) Location Object
	i) Location object properties
	ii) Location object methods
	Example (8)
	Dialog boxes
	Syntax (2)
	Example (9)
	Alert boxes
	Example 1:
	Example 2:
	Confirm boxes
	Syntax:
	Prompt boxes
	Example (10)
	Output (3)
	Examples
	Event handlers
	Important event handlers
	i) onload
	Example (11)
	ii) onclick
	Example (12)
	iii) onunload
	Example (13)
	iv) onfocus
	Example (14)
	v) onblur
	Example (15)
	vi) onerror
	Example (16)
	Forms
	Form array
	Form element properties
	Example 1
	output
	Example2
	Using java script URLs
	Example (17)
	Image maps
	i) Client side image map
	Syntax (3)
	Example (18)
	Server side image map
	Example (19)
	status bar
	Properties
	Example (20)
	Cookies
	Use of cookies
	Live connect
	Java console
	Internet Explorer
	Java script to java communication
	Java to java script communication
	SUMMARY
	Review Questions
	Part - A
	PART – B
	PART – C
	Objectives :
	Script
	Client Side scripting Language
	Server side scripting Language
	Java script
	JSP
	Servlet
	Client side versus server side scripting Client Side Scripting
	Server Side Scripting
	JSP versus java script
	Disadvantages of JSP
	Client
	Server
	Client responsibilities

	Server responsibilities
	Installing and configuring Tomcat server
	Step 2: Setting the class path variable for JDK

	JSP Architecture
	Life Cycle of a JSP Page
	JSP vs Servlets
	List of JSP servers
	JSP Elements
	1. HTML Comments
	Syntax
	Example
	2. Hidden Comments
	Syntax (1)
	Directives
	Syntax (2)
	Attributes of JSP page directive
	1) import
	2) extends
	3) info
	4) buffer
	5) language
	6) isThreadSafe
	7) errorPage
	8) isErrorPage
	9) autoflush
	10) Session
	Example (1)
	4. Taglib Directive
	Syntax (3)
	1. Declarations
	2. Response Object
	syntax
	5. Application Object
	6. Out Object
	7. Page Object
	8. Config Object
	9. Exception Object
	Scope Application Scope
	Session Scope
	Request
	Summary
	Review Questions
	PART – B
	PART – C
	UNIT-5
	Objectives :
	INTRODUCTION
	WRITING SIMPLE JSP PROGRAMS
	Output:
	Write a JSP program to find the maximum of three numbers
	Output: (1)
	Write a program to add two numbers
	Output: (2)
	MYSQL
	Creating MySQL Tables
	Syntax:
	Example (2)
	Creating Records
	Syntax: (1)
	Second method:
	Syntax: (2)
	Data Source 5.2.3.1<sql:setDataSource> Tag
	Syntax (4)
	JDBC-ODBC Bridge
	Creating connection
	Creating statement
	Statement
	Example:
	executeUpdate() method
	Example (3)
	executeQuery() method
	Example: (1)
	Output
	Example: (2)
	The Output is
	Example: (3)
	The Output is:
	Example: (4)
	The Output is (1)
	Example (4)
	The Output is (2)
	Project Description:
	Forms used :
	Software Required:
	Starting MySql database server:
	C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqld"
	The following page will be appear
	Table Creation
	Inserting Records

	Steps to run the modules
	Module-I
	homepage.jsp
	Module II Inserting Record:
	Insertform.jsp
	Algorithm
	insert.jsp
	Module III Updating/Deleting Records:
	datamanipulate.jsp
	Update records
	Updateform.jsp

	Update.jsp
	Algorithm
	Deleting records
	Algorithm (1)
	Delete.jsp
	Module IV Viewing Records:
	Algorithm (2)
	Productstockreport.jsp
	Steps to check the records in mysql after run this project
	Summary
	Review Questions Part A
	Part B
	Part C

