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-X Oxide-Semiconductor (MOS) structure is created by superimposing
5€

al layers of conducting and insulating materials to form a sandwich-
% IKE structure,

» These structures are manufactured using a series of chemical processing
steps involving oxidation of the silicon, selective introduction of dopants,
/ and deposition and etching of metal wires and contacts.

= CMOS technology provides two types of transistors: an n-type ltransistor
(nMOS) and a p-type transistor (pMOS).

» Transistor operation is controlled by electric fields so the devices are also
called Metal Oxide Semiconductor Field Effect Transistors (MOSFETSs)
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MOS Pringipl
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N-channel @ET

= ConsnderaQS transistor,
» The ' erally grounded so the p-n junctions of the source and
drig dy are reverse-biased
Xte IS also grounded, no current flows through the reverse-biased
netions. Hence, we say the transistor is OFF.
%ﬁ the gate voltage is raised, it creates an electric field that starts to attract

free electrons 1o the underside of the Si=Si02 interface,

® |f the voltage is raised enough, the electrons outnumber the holes and a
thin region under the gate called the channel is inverted to act as an n-
type semiconductor.

®» Hence, a conducting path of electron carriers is formed from source to
drain and current can flow. We say the transistor is ON.
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P-channel M %E)
® Fora pQ@mThe body is held at a positive voltage.

N i$ also al a positive voltage, the source and drain junctions are
B.hied and no current flows, so the transistor is OFF,
the gate vollage is lowered, positive charges are altracted to the underside

%e Si=Si02 interface.

® Asufficiently low gale voltage inverts the channel and a conducting path of
positive camiers is formed from source to drain, so the trangistor is ON.
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MOSFET

O

B3 K e of an MOS transistor controls the flow of current between the source and
[

ch

implifying this to the extreme allows the MOS transistors lo be viewed as simple
N/OFF switches

%- When the gate of an nMOS transistor is 1, the transistor is ON and there is a
condueting path from source lo drain.

= When the gale is low, the nMOS transistor is OFF and almost zero current flows
from source to drain

= A pMOS transistor Is just the opposite, being ON when the gate is low and OFF
when the gate is high
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CMOS Inverte C)

» Whentheinput Ais 0, th S transistor is OFF and the pMOS transistor Is ON.
Thus, the out s pulled up to 1 because it is connected fo

® VDD but
® Convsongwhen Ais 1, the nMOS is ON, the pMOS is OFF, and Y is pulled down

emanc and Symbol for a CMOS inverter
, 6 Voo

.
vl inverter fruth tabk

4 ,
AJ[_{E:Y A-’ O Y 0 |

GND

® The bar at the top indicates VDD and the triangle at the bottom indicates GND.
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CMOS NAND C@t,g/

= |t consists of two se OS transistors between Y and GND and two
parallel pM ansistors between Y and VDD,

» /feitherd is 0:
. Q one of the nMOS transistors will be OFF, breaking the path
o GND.

f
at least one of the pMOS transistors will be ON, crealing a path
6. from Y to VDD.

Hence, the output Y will be 1.

® |f both inputs are 1, ‘
» both of the nMOS transistors will be ON and | Y
® both of the pMOS transistors will be OFF.
= Hence, the output will be 0.
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CMOS NANDQc/@tgo

\2 Pull-Down Network | Pull-Up Network
Qw OFF | ON

- CQOFF Y JON I
0 T OFF | ON
1 ~ ON | OFF
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CMOS LogQ;dure

7 " p
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pull-up
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Inputs N

Qutput

nMOS
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CMOS Logic S

® |n general, ti%(gate has
® an S puldown network fo connect the output to 0 (GND) and

= pull-up network to connect the output to 1 (VDD)

, when we join a pull-up network to a pull-down network to form
gate, they both will attempt to exert a logic level at the output.

y
% e networks are arranged such that one is ON and the other OFF for any
/ input pattern.

»r ‘ pulbug OFF | pull-upON |

pull-down OFF | Z !

pull-down ON | 0 crowbarred (X) |
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Connection and behavi@ series and parallel

transistors < )
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CMOS NO

® The nMOS L @ in paraliel to pull the output low when either input is
high.

» The @ ransistors are in series 10 pull the output high when both inputs are low

'?/
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CMOS NOR Gat€§</

= The nMOS transistors are

pggfilel to pull the output low when etther input is
high.
®» The pMOSQ rs agp in series to pull the output high when both inputs are low

4L
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Y= B)+(C D)

AND-OR-INVERT-22 or AOI22
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Pull Up Network
q A | = C
B — Q\ - -{ =D
Pull@!work 4 4{/ . P -

A< -8 C PD_—_’A—{' r‘;p—a
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Compound Gat€)®

Q@(J‘I'f B+ C) £ D
%Q OR-AND-INVERT-3-1 (OAI31) gate

/

/
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Combinational C@s

Sketch transistor-
you h.l\ C bmh

m(‘s for the following logic functions. You may assume
d wmplumcm ary versions of the inputs available.

iMncd by

/

Yi=A0 - A1

b) A 3:2 priority encoder defined by

YO = A0 (41 +.42)
Yl = .‘T” " :'rl
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Pass Transi

= By combining
which 0s and 1Qare

1
a{':}»b

ab
(a)

(d)

d Transmission Gates

nMQS and a pMOS transistor in parallel, we obtain a switch,

g:O_@:}
a-o"ep

g=1gb=0

(D)

h passed in an acceplable fashion.

- We temera mission gate or pass gate.

Input Output
g=1,gb=0
0 —e-%e-sirong 0
g=1,gb=0
| —o—9o- strong !
(c)
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Pass Transist&r/{g%ransmission Gates

supplies, or raifs, (VDD and GND) are the source of the
1s and 0s,

% OS transistor is an almost perfect switch when passing a 0 and thus
say it passes a strong 0. However, the nMOS transistor is imperfect at
passing a 1. We say it passes a degraded or weak 1.

= An pMOS transistor is an almost perfect switch when passing a 1 and
thus we say il passes a strong 1. However, the nMOS (ransistor is
imperfect at passing a 1. We say il passes a degraded or weak 0
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Pass Transisth)Gd Transmission Gates

Concept of Weak 1: ,
Consider 8\5&8 transistor with the Gate and Drain tied to Voo.

Imagi ource is initially at Vs = 0. Vjs > Vi, so the transistoris ON and
c t S.
Voo
Voo | 4
.L._.L_V‘ - Vw- Vh

If the voltage on the source rises to Vs = Voo = Vin, Vis falls to Vin and the transistor
cuts itself OFF.

Therefore, nMOS transistors attempting to pass a 1 never pull the source above
Voo — Vin. This loss is called threshold drop.
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Pass Transistors ransmission Gates

O

' Concept of Weak O:Q
Similarly, pMOS \ pass 1s well but 0s poorly. If the pMOS source drops below |Vip|,

the transistor

/ |

vV GND

Hence, pMOS transistors only pull down to within a threshold above GND,
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DIFFERENT LEVEL QF,ABSTRACTIONS
IN VLS IGN

Functional Simulation

Design Specification |

Formal Simulation

Behavioral Design
RTL Design
Gate-Level I

esign " Design

ntry Verification

Electrical Simulation

Power Analysis

| Timing Verification

v v v

Automated Full Custom Test Pattern Fault
Layout Layout Generation Simulation
‘ ) Layout Test
Specification Pattern

v
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STEPS INVOL

DESIG&/@R CESS

Design Specifications

1

Schematic Capture

1

Create Symbol

Simulati

1

Layout

1

Design Rule Check

1

Extraction

1

Layout vs. Schematic
Check

1

Post-Layout Sim.

Chip Design
Specification

D IN VLSI

Architectural
Design

Behavioral &
Functional modelling

Logical
- implementation

W
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Standard cells

Metal

Metal2 Po

all Port
lysilicon Port

Metald
Metal2
Metall
Palysilicon
N Diffusion |
P Diffusion |

Standard cell row

Contact
Tap
Combined contact

& tap
Maecros

ROUTING
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Hlstor&/@%HDL

Designed by IBM, truments and Intermetrics as part of the
DoD funded VH ogram

Standardized EE in 1987: IEEE 1076-1987

Enhanced of the language defined in 1993: IEEE 1076-1993

Additional standardized packages provide definitions of data types and
expressions of timing data

— IEEE 1164 (data types)
— IEEE 1076.3 (numeric)
— IEEE 1076.4 (timing)
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Traditional vs. Hardware JPescription Languages

* Procedural programps @guages provide the how or recipes
— for computati Q

— for data m@a ion
— for exe@ on a specific hardware model
 Hardware description languages describe a system
— Systems can be described from many different points of view
* Behavior: what does it do?
 Structure: what is it composed of?
* Functional properties: how do I interface to it?

 Physical properties: how fast is 1t?
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Us

« Descriptions can be at differngeVels of abstraction
— Switch level: modelgwitchMig behavior of transistors
— Register transferQC/)odel combinational and sequential logic
components
— Instructio:@}bhitecture level: functional behavior of a
mlcrop% r

* Descriptions can used for
— Simulation
 Verification, performance evaluation
— Synthesis
* First step in hardware design
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Why do we %d%be Systems?

* Design Spe@g‘ﬁon

— unambi definition of components and
inter in a large design

e Design Siumulation

— verily system/subsystem/chip performance
prior to design implementation

e Design Synthesis

— automated generation of a hardware design
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Digital System@e&gn Flow

Requirements

v

Functional Design
I

Y

Register Transfer
Level Design

Y

Logic Design

|
Y

Circuit Design

Y

Physical Design
|

\{

Description for Manufacture

Behavior@ lation
Nmulation

Logic Simulation
Verification
Fault Simulation

Timing Simulation
Circuit Analysis

Design Rule Checking

Design flows operate at multiple
levels of abstraction

Need a uniform description to
translate between levels

Increasing costs of design and
fabrication necessitate greater
reliance on automation via CAD
tools

$5M - $100M to design new
chips

Increasing time to market
pressures
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A Synthesis Dgjen Flow

VHDL Model

Register Transfer
Level Design
1

\J

Y

Synthesis

VHDL Mo&
Lo@:lation

|
Y

Place and Route

Behavioral Simulation
VHDL)

Y

Timing Extraction

T

« Automation of design refinement steps
» Feedback for accurate simulation
« Example targets: ASICs, FPGAs
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The Role of Hardware&@jption Languages

BEHAVIORAL STRUCTURAL
algorithms processors
register transf registers
gates

transistors

Boolean eNr&gsi
tr r
1 cells

1 modules

chips

-

| boards

PHYSICAL [Gajski and Kuhn]

 Design is structured around a hierarchy of representations

* HDLs can describe distinct aspects of a design at multiple
levels of abstraction
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Domains and Lg of Modeling

Structural Functional

Lefe

)

Geometric

high level of
abstraction

low level of
abstraction

“Y-chart” due to
Gajski & Kahn
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Domains and Lg of Modeling

Structural Functional
Q Algorithm
s\\‘\)“\ (behavioral)
0 '

Register-Transfer
Language

Boolean Equation

Geometric “Y-chart” due to
Gajski & Kahn
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Domains and Lg of Modeling

Structural Functional

Processor-Memory ’)Q
Switch \\\
0N
0%

Register-Transfegry ) ) '
|
Gate V‘

Transistor

Geometric “Y-chart” due to
Gajski & Kahn



ECE

Domains and Lg of Modeling

Structural Functional

S
1

Geometric “Y-chart” due to
Gajski & Kahn
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Basic V@%oneepts

e Interfaces Q

. Modeh@havior, Dataflow, Structure)
e Test Behwhes

* Analysis, elaboration, simulation

* Synthesis
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Basic Structugg/

* Entity gﬂ
— Entity de }ﬁ
1nterfa% outside
Forts

world; nes input
and output signals

Architecture: describes
the entity, contains

processes, components
operating concurrently

a VHDL File

| H DL E iRy

Interface

(Entity declaration

Body
Architecture)

Sequential,
combinational
Frocesses

Subprograms
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Entity %@%ratlon

entity NAME_OF_ENTI

port (signal_names4 e type,

MVL -9

Uninitialized ‘0" | Weak 1 '’
'-" | Weak 0 L'
'1" | Weak Unknown |'W'

. BT
signal_na @ e type; Don't Care
. Forcing 1
Signc%n

High Impedance

Forcing 0
es: mode type); :

Forcing Unknown

end [NAME_OF_ENTITY] ;

 NAME OF ENTITY: user defined

» signal_names: list of signals (both input and
output)

 mode: in, out, buffer, inout

* type: boolean, integer, character, std_logic
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Arc@(e%t/ure

 Behavioral
archltecturegm cture_name of NAME_ OF ENTITY

rat10

begin
-- Statements
end architecture name;
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VHDL Frr,cess

ructions that are executed sequentially

SS
declarations;
begin
sequential statement;
sequential statement;

end process;

U The whole process is a concurrent statement

3

COEN 313: Sequential Statements
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STA@A%NTS

An if...else stateme uentlal statement in VHDL which got
executed dependlrx the value of the condition. The if condition
tests each con n equentially until the true condition 1s found.

VHDL is are Description Language that 1s used to describe at
a high leve straction a digital circuit in an FPGA or ASIC. When
we need to perform a choice or selection between two or more
choices, we can use the VHDL conditional statement.

VHDL entity example. The entity syntax is keyword “entity”,
followed by entity name and the keyword “is” and “port”. Then
inside parenthesis there 1s the ports declaration. In the port declaration
there are port name followed by colon, then port direction (in/out in
this example) followed by port type.



ECE

Ha Qgc/ier

library ieee;
use ieee.std_logic_1164.all;
entity half_adder is
port(
X,y: in std_logic;
sum, carry: out std_logic);
end half adder;

architecture myadd of half_adder is
begin
sum <= X XOry;
carry <=X and y;
end myadd;
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Entity %ﬁ%les

entity half_adder is C)
port( Q
X,y: 1n @io;
sum@ : out std_logic);
der,

end half ad
A SUM
B
C CARRY
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Architecture Examplegc%ﬁioral Description

A B, . 1n std_logic;

SUQM_\QARRY in std_logic);

e Architecture CONCURRENT of 18
begin
SUM <= A xor B xor C after 5 ns;
CARRY <= (A and B) or (B and C) or (A and C) after 3
ns;
end CONCURRENT;
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Architecture Examples e)%dral Description ..
o architecture STRUCTUR l@
signal S1, C1, C2 : bit;

component HA Q
port (I1, 12 : in bit; ; bit);

end component;

component O \
port (11, I3~ i; X : out bit);
end compo%
begin
INST_HA1:HA port map (I1 =>B,12=>C, S =>S1,C=>Cl);
INST_HA2 : HA port map (I1 => A, 12 =>S1, S => SUM, C => C2);
INST_OR : OR port map (I1 => C2, 12 => C1, X => CARRY);

~r

end UCTL :

A—,

4
=
=
w»n»
v

> SUM
B >

v
r—aH
| n
,_‘_
[\®)
@
@
| S
y
Hﬁ—i

a
o
G_.

5
-
(\9]
wl
e
>
2
Z
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... Architecture Examples: Structural

Des von

Entity HA is @ ntity OR is
PORT (M1, 12 : in bit; S,C:ou@; PORT (I, 12 : in bit; X : out bit);
end OR ;

t
end HA ; Q
Architecture behawor&\ 1S Architecture behavior of OR is

S<=I1xor|2;%

X<=I11 orl2;
C <=1 and I2; end behavior;
end behavior;
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One Entity M{}l)%éscriptions

* A system (an entity I&peciﬁed with different

architectures
E\ Entity

Architecture
A
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Test ches

» Testing a de@gy simulation

e Use a res ch model

— an ar%ecture body that includes an instance
of the design under test

— applies sequences of test values to inputs

— monitors values on output signals
* either using simulator

 or with a process that verifies correct operation
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VHDL CODES:
OR gate program
library IEEE;

use IEEE.STD_LOGIC_1164.
use IEEE.STD_LOGIC_U
entity gate is
Port (a:in STD_LOG@C; bl _LOGIC;
¢ : out STD_LOGIC);
architecture Behavioral o

STD_LOGIC_ARITH.ALL;

is begin
c<=aorb;

end Behavioral;

ANDgate Program

library IEEE;

use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL,;
entity gate is

Port (a:in STD_LOGIC; b : in STD_LOGIC;
c : out STD_LOGIC); end gate;

architecture Behavioral of gate is begin

¢ <= a and b; end Behavioral;
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VHDL CODES:

NOT gate program

library IEEE;

use [IEEE.STD_LOGIC_1164.
use IEEE.STD_LOGIC_U
entity gate is

Port (a : in STD_LO@C);
architecture Behavioral®® gate@k begin

STD_LOGIC_ARITH.ALL;

¢c <=anot b;

end Behavioral;

NANDgate Program

library IEEE;

use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL,;
entity gate is

Port (a:in STD_LOGIC; b : in STD_LOGIC;
¢ : out STD_LOGIC); end gate;

architecture Behavioral of gate is begin

¢ <= anand b; end Behavioral;
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VHDL CODES:
Nor gate Program
library IEEE;

use IEEE.STD_LOGIC_1164.
use IEEE.STD_LOGIC_U
entity gate is
Port (a:in STD_LOG@C; bl _LOGIC;
¢ : out STD_LOGIC);
architecture Behavioral o

STD_LOGIC_ARITH.ALL;

is begin

¢ <= anand b; end Behavioral;

Exor gate Program

library IEEE;

use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL,;
entity gate is

Port (a:in STD_LOGIC; b : in STD_LOGIC;
¢ : out STD_LOGIC); end gate;

architecture Behavioral of gate is begin

¢ <= aexor b; end Behavioral;
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Combinations Circuits

Combinational
circuit

- =
-

— > moutputs

.
.

>

c E 2 Combinational circuits

Inputs —

Combinational
circuit

— Outputs

* So far we've just worked with combinational circuits, where applying the
same inputs always produces the same outputs.

* This corresponds to a mathematical function, where every input has a

single, unique output.

* Inprogramming terminology, combinational circuits are similar to
“functional programs” that do not contain variables and assignments.

Latches
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Half Adder

Sum

Carry
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TRUTH-$4BLE
v
N
>

Outputs
Cout

IC(in
0
1

Inputs
B
0
0

A
0
0

Gou 11
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HALF SU @«ACTOR

A
Difference
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Carry
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4 TO 28X
Q/b

< ’31 SD
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4 to 1 Multiplexer and its truth table
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A>B

A
@pﬂ[’ﬂt()]’ e Aomr R
A<B

C=AB ) A<B
D = AB+AB =» A=B
E=AB == A-B
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Full Adder

Full Adder

Full Adder
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4 BIT S

4 bit adder-subtractor:

U CTOR
A

B, A, Bd Ky
i .
i\?—
c
FA ! FA Co
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VHDL PROGRAM@R HALF ADDER

VHDL Cod Lf add€r

\ y IEEE;
o WEEE.STD_LOGIC_1164.ALL;
q use IEEE.STD_LOGIC ARITH.ALL;

use IEEE.S5TD LOGIC_UNSIGNED.ALL;

entity half adder is
port(a,b:in bit; sum,carry:out bit);

end half_adder;

architecture data of half adder is
begin

sum<= a xor b;

carry <= a and b;

end data;



ECE

VHDL PROGRA FULL ADDER

Full adder Code:

uzl TEEE.STD LOGIC UMNSTIGMED.ALL
entity full_adder is port
(a,b,c:in bit; sum,carry:out bit);

end full adder;

architecture data of full_adder is
begin

sum<= a Xor b xor c;

carry <= ({a and b) or (b and c) or (a and c));

end data;
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VHDL PROGR FOR HALF
SUB

e library IEEE;
e uselEEE.STD_LOGIC_11 AL use [EEE.STD_LOGIC_ARITH.ALL;
e uselEEE.STD LOGIC ED.ALL;

* Libraryieee; Q~
* use ieee.std_@ 164.all;

e entity half subis
 port(a,b:instd logic; dif,bo: out std logic);
* end half _sub;

* architecture sub_arch of half_sub is begin
e dif <=a xor b;
* bo<=(nota)andb; end sub_arch;
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VHDL PROGI’%FOR FULL

SUB

* library IEEE;
* use IEEE.STD_LCQ ~?164.ALL; use
R

IEEE.STD_LOGI ITH.ALL;

e use |EEE.ST IC_UNSIGNED.ALL;

e entity full subis

e port(a,b,c: in bit; sub, borrow:out bit); end full sub;

e architecture data of full_sub is beginsub<=a xor b xor
C,

* borrow <= ((b xor c) and (not a))or (b and c);

 end data;
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VHDL PROGRAM FOR SINGLE BIT
DIGITAL CWRATOR

library IEEE; @

use |[EEE.STD _ ~ 1164.ALL;

entity compeyNdr_1bit is
Port ( A,&cd_logic; G,S,E: out std_logic);

end compdrator_1bit;

architecture comp_arch of comparator_1bit is
begin

G <= A and (not B); S <= (not A) and B; E <= A xnor
B;

end comp_arch;
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VHDL PROGRA R ENCODER

e library IEEE; %
e use IEEE.STD_LOGIC_1164.A€L2e IEEE.STD_LOGIC_ARITH.ALL;

* uselEEE.STD LOGIC_ U ALL;
* entity first is \
e port(input:inst ic Yector(3 downto 0); output : out std_logic_vector(1

downto 0)); engskir
e architecture B iPpral of first is begin
e process(input) b&8in

* caseinputis

 when "0001" =>output <= "00";

 when "0010" =>output <="10";

« when "0100" =>output <="01";

 when "1000" =>output <="11"; when others =>null;
* end case; end process;

 end Behavioral;
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VHDL PROGRA R DECODER

* Libraryieee; @

* use ieee.std_logQJ 4.all; useieee.std logic_arith.all;

useieee.std nsigned.all;
e entityobj Is port(clk . in std_logic;

 sw :instd«0gic vector(3 downto 0); y . out
std logic_vector(7 downto 0);

e --sel:outstd logic vector(5 downto 3) sel : out
std logic_vector(5 downto 0)

* )

* endobject co;
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Four bit Arithpmetic adder
QQ‘i

* LIBRARY IEEE; @

+ USE IEEE STD _1164.ALL;
+ USE IEEE SKQDOGIC_ARITH.ALL;
+ ENTITY ABDER_4 BIT IS

* PORT(A:INSTD _LOGIC_VECTOR(3 DOWN TO 0);
(B:IN STD _LOGIC_VECTOR(3 DOWN TO 0);

e CARRY:OUT STD LOGIC;
* S:0UT STD LOGIC VECTOR(3 DOWN TO 0);
 END ADDER 4 BIT;
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* ARCHITECTURE ADDER@C OF ADDER_4 BIT

S Q

* COMPONENT FA

. PORT(X:INSTDAKOBIC;
e Y:IN STD :

* CI:IN ST%%GIC;

 SUM:0OUT STD LOGIC;

e CY:OUT STD_LOGIC);

 END COMPONENT:

« SIGNAL C0,C1,C2,C3:STD LKOGIC;
* BEGIN;



ECE

e FA3:
* CARRY<=C3;
* END ARCH 4;

FA
FA
FA
FA

* BBAR<=NOT B;
* FAO:
* FAL:
* FA2:

PORT MA

&
Q/C)

P(A(0)),BBA
P(A(1)),BBA
P(A(2)),BBA

P(A(3)),BBA

R(0),',
R(0),'1,
R(0),'1,

R(0),'1,

D(0)C(0);
D(0)C(0);
D(0)C(0);

D(0)C(0);
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Four bit Arithm%{osu BTRACTOR

* LIBRARY IEEE; @

+ USE IEEE STD _1164.ALL;
+ USE IEEE SRQDOGIC_ARITH.ALL;
« ENTITY SOB % BIT IS

* PORT(A:INSTD _LOGIC_VECTOR(3 DOWN TO 0);
(B:IN STD _LOGIC_VECTOR(3 DOWN TO 0);

* D:OUT STD_LOGIC;
« OV:0UT STD LOGIC VECTOR(3 DOWN TO 0);
. END SUB 4 BIT:
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e ARCHITECTURE SU@&F ADDER 4 BIT IS
« COMPONENT F
e PORT(X:INST &IC;
* Y:JINSTD é*
o CL:IN STD%IC;
 SUM:OUT STD_LOGIC;
* CY:0UT STD_LOGIC);
« END COMPONENT:

* SIGNAL CO0,C1,C2,C3:STD_LKOGIC;
* BEGIN;
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e FA3:
* OV<=C2 XOR C3;
* END SUB 4;

FA
FA
FA
FA

* BBAR<=NOT B;
* FAO:
* FAL:
* FA2:

PORT MA

&
Q/C)

P(A(0)),BBA
P(A(1)),BBA
P(A(2)),BBA

P(A(3)),BBA

R(0),',
R(0),'1,
R(0),'1,

R(0),'1,

D(0)C(0);
D(0)C(0);
D(0)C(0);

D(0)C(0);
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Q‘o
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SEQUENTIAL cC(ouw DESIGN

Inputs — P Outputs

Combinational
Circuit

Memory | |

Elements
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IK FLI%}‘(@PS

SeffPin

Reset Pin

JK ‘@ lop Symbol

Output

Inverted Qutput

Introduction to JK Flip Flop

JK Flip-Flop Logic Table

C Q Q
HIGH Latch Latch
HIGH 0 1
HIGH 1 0
HIGH Toggle | Toggle
LowW Latch Latch
Low Latch Latch
Low Latch Latch
Low Latch Latch

www.TheEngineeringProjects.com

A
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Toggle or ‘ ) T an | Q1| U K
T . | t — T Q w 0 0 0 0 X
rigger Inpu Y R |
CLK Inverted Output : ? ; 1 ::
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3 BIT SYNCHRON UP COUNTER




3BIT SYNCHRONob&I)OWN COUNTER
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3 BIT SYNCHRON%@UP/DOWN

CCCCC
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3 BIT ASYNCHRO UP COUNTER

'\JK:,{
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3 BIT ASYNCHRUYOUS DOWN

HIGH 0 ’

ol-Bokl ™ ol-B L ™ dl=
cL S S
K. @ —K_. O K..2
FFO FF1 FF2
. 1 2 3 4 5 6 7 8
CLK o
1
ol .
1
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3 BIT ASYNCH

I@?{US UP/DOWN
R

e
1

B
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Decad

HIGH (Logic 1)

FF1
¢] Q1

LK m
CLR

[

CLK

nter

Input D C B A
Pulses

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 § 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 3 0 1 0

0 0 0 0 0 (resets)
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RING C%NTER

s

et o
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CLK| D; D; | D3 D4| Ds| Dg @
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Q? &3

000100
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What is johré)
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D Fubfmp

Library IEEE;
USE IEEE.Std_logic_1164.
entity RisingEdge__ DFI|p

port( Q : out std_logi std _logic;

D :in std_logic );

end Rlsngdge op;

architecture Beha raI of RisingEdge_ DFlipFlop is
begin

process(Clk)

begin if(rising_edge(Clk))
then Q<=D;

end if;

end process;

end Behavioral;
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D FLIPFLOPAMh RESET

Library IEEE; %
USE IEEE.Std_logic_1164.all; < ,

entity RisingEdge DFlipFlo
port( reset,Q : out std_logW\
D :in std_logic );

end RisingEdge_D
architecture Beha%
begin

process(Clk)

Reset="1 then temp="0";"
begin if(rising_edge(Clk))
then Q <= D;

end if;

end process;

end Behavioral;

;in std_logic;

of RisingEdge DFlipFlop is
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library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
entity T_FF is

port(T: in std_logic;

T FLlPé(@PS

Q: out std_logic); \
end T_FF;
architecture Behavioral of 7%

signal tmp: std_logic;
begin

process (Clock)
begin

if Clock'event and Clock="1"' then
if T='0' then

tmp <=tmp;

elsif T="1" then

tmp <= not (tmp);
end if;

end if;

end process;
Q<=tmp;

end Behavioral;
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T FLIP FLOP&)(@«th RESET

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
entity T_FF is

port( reset,T: in std_logic;
Clock: in std_logic;

Q: out std_logic); \
end T_FF;
architecture Behavioral of 7%

signal tmp: std_logic;
begin

process (Clock)

begin

if Clock'event and Clock="1"' then
Reset="1 then temp="0";"
if T='0" then

tmp <=tmp;

elsif T="1" then

tmp <= not (tmp);

end if;

end if;

end process;

Q<=tmp;

end Behavioral;
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J K FLIP %)PS

library ieee;

use ieee. std_logic_1164.all;
use ieee. std_logic_arith.all;

use ieee. std_logic_unsigned.all;

entity JK_FF is
PORT( J,K,CLOCK: in std_logic;
Q, QB: out std_logic);
end JK_FF; \
Architecture behavioral of JK_FF is

begin
PROCESS(CLOCK)
variable TMP: std_logic;

begin

if(CLOCK="1' and CLOCK'EVENT) then
if(J='0"and K='0")then
TMP:=TMP;
elsif(J="1"and K="1")then
TMP:= not TMP;
elsif(J="'0' and K="1")then
TMP:='0";

else

TMP:='1";

end if;

end if;

Q<=TMP;

Q <=not TMP;

end PROCESS;

end behavioral;
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J K FLIP FLOPS@th RESET

library ieee;

use ieee. std_logic_1164.all;
use ieee. std_logic_arith.all;

use ieee. std_logic_unsigned.all;

entity JK_FF is
PORT(reset J,K,CLOCK: in std_logic;
Q, QB: out std_logic);
end JK_FF; \
Architecture behavioral of JK_FF is

begin
PROCESS(CLOCK)
variable TMP: std_logic;

begin

if(CLOCK="1' and CLOCK'EVENT) then
Reset="1then temp="0";"
if(J='0"and K='0")then
TMP:=TMP;

elsif(J="1" and K="1")then
TMP:= not TMP;
elsif(J="'0' and K="1")then
TMP:='0";

else

TMP:='1";

end if;

end if;

Q<=TMP;

Q <=not TMP;

end PROCESS;
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VHDL code for

nchronous

up-sdunter

library IEEE;
use [EEE.STD LOGIC_1164.ALL;
use [EEE.STD LOGIC_ARITH.ALL
; use IEEE.STD_LOGIC_UNSIGN IQ
entity SOURCE is \
Port ( CLK,RST :in STD_L
COUNT : in out STD% VECTOR (3 downto 0));

end SOURCE;

architecture Behavioral URCE is
begin

process (CLK,RST)

begin if (RST ="'1")

then COUNT <= "0000";
elsif(rising_edge(CLK))
then COUNT <= COUNT+1;
end if;

end process;

end Behavioral;
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VHDL code for gynchronous
dow nter

library IEEE;
use [EEE.STD_LOGIC_1164.ALL;
useIEEE.STD_LOGIC_ARITH.ALL;Q

use |IEEE.STD_LOGIC_UNSIGNED.
entity is
Port ( clk,rst : in STD_LO

count : out STD_LOGIgm OR (3 downto 0));
end;
architecture Behavioral own_count is

signal temp:std_logic_vector(3 downto 0);
begin process(clk,rst)

begin if(rst="1")

then temp<="1111";
elsif(rising_edge(clk))

then temp<=temp-1;

end if;

end process;

count<=temp;

end Behavioral;
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VHDL code for gynchronous
updown-.gounter

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity updown_count is
Port ( clk,rst,updown : in STD MGl
count : out STD_LOGIC_VECH§ aawnto 0));

end updown_count;
architecture Behavioral 0o n-count is
signal temp:std_logic_vecto ownto 0):="0000";

Begin

process(clk,rst)
begin if(rst="1")

then temp<="0000"

; elsif(rising_edge(clk))
then if(updown="'0")
then temp<=temp+1;
else temp<=temp-1;
end if; end if;

end process;
count<=temp;

end Behavioral;
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VHDL CODE FOR P&CADE COUNTER

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity decade is

Port ( CLOCK : in STD_LOGIC;
RESET :in STD_LOGIC;
Q:out STD_LOGIC_VECT \/ 0 0));
end decade;
architecture Behavioral ofg®ea
signal q_tmp: std_logic_
begin
process(CLOCK,RESET)
begin
if RESET = '1' then

count <= "0000";
Else if clock’event AND clock="1" then
If count<count+'1’;
Else

count <= "0000";
end if

Q <= count;
end process;
end Behavioral;

downto 0):= "0000";
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VHDL CODE FOR-KING COUNTER

. library IEEE;
. use IEEE.STD_LOGIC_1164.ALL;

. entity Ring_counter is

. Port ( CLOCK : in STD_LOGIC;

. RESET : in STD_LOGIC;

. Q : out STD_LOGIC_VECTOR (3 dovgo
. end Ring_counter;

. architecture Behavioral of Rj

. signal q_tmp: std_logic_veffitor 0):="0000";
. begin

. process(CLOCK,RESET)

. begin

. if RESET = '1' then

. g_tmp <="0001";

. elsif Rising_edge(CLOCK) then

. q_tmp(1) <= q_tmp(0);

. q_tmp(2) <= q_tmp(1);

. a_tmp(3) <= q_tmp(2);

. q_tmp(0) <= g_tmp(3);

. end if;

. end process;

. Q<= q_tmp;
. end Behavioral;
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VHDL CODE FOR J%@SON COUNTER

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Johnson_counter is
Port ( clk : in STD_LOGIC;
rst : in STD_LOGIC;

Q: out STD_LOGIC_VECTOR (3 downto 0));
end Johnson_counter;

architecture Behavioral of Johnso
signal temp: std_logic_vector(3 dwn
begin

process(clk,rst)

begin

if rst="1"then

temp <= "0000";

elsif Rising_edge(clk) then
temp(1) <= temp(0);

temp(2) <= temp(1);

temp(3) <= temp(2);

temp(0) <= not temp(3);

end if;

end process;

Q <=temp;

end Behavioral;



/EcE

DAY
PROGREWMIABLE LOGIC
& DEVICES
%Q"

SWATHI E R
LECTURER
ECE




/EcE

PROM

PROM chips have several di%\t applications

including cell phones, vidgo e consoles, RFID tags,
medical devices, and €t ectronics. They provide a
simple means of prgrrandning electronic devices. Standard
PROM can onl ' WwPgrammed once.
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/ece  PAL N

Programmable Array Logic (PAL) is e of semiconductor used to
implement logic functions in dit; rgaits. PAL is a type of
h

programmable logic device, W, i9 a term for an integrated circuit
that can be programmed i boratory to perform complex functions
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COMPARE PRO

ANSsS

e e et el

P(ROM)

1. AND array is fixed,
array is program

2.0nly SSOP
function or
be implement

| 3. Cost Is low

PLA

PAL

1.0R array is fixed, AND is

1.Both arrays are

array programmable programmable.
an | 2. Any SOP type Boolean 2.Any SOP type
can | expression can be expression can be
implement. implement.
|3 Costislow. | 3. Costiier. o

4. Simple to construct,

4. Simple to construct.

4. Complex to construct.
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&
® Available choice for ig%ﬂesigner
* FPGA — A detail ék
® Interconnecti @mework

® FPGAs a S

e Field pro mability and programming technologies
e SRAM, Anti-fuse, EPROM and EEPROM
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Designer’s Choic€)<</

o Digital designer has v ri%%ptions

tegl circuits) or MSI (medium scale
omponents

integrated circ
o Difficulti X
* Intergemn¥tions grow with complexity resulting in a prolonged testing
phasg

S design size increases

® Simple programmable logic devices
PALs (programmable array logic)
PLAs (programmable logic array)

* Architecture not scalable; Power consumption and delays play an
important role in extending the architecture to complex designs

o Implementation of larger designs leads to same difficulty as that of discrete
components
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Designer’s Choj

® Quest for high capac y, WO choices available

* MPGA (Mask&@grammable Logic Devices)
dWi

Custont ing fabrication

Lo N expensive

Prc‘)’g

® FPGA (Field Programmable Logic Devices)

Customized by end user

d time-to-market and high financial risk

Implements multi-level logic function

Fast time to market and low risk
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FPGA - A Quickég?(

® Two dimensional ar ustomizable logic block
placed in an inte Q)ct array

e [ike PLDs PQ. mable at users site

¢ Like MP 'mplements thousands of gates of logic in

a single device
Employs logic and interconnect structure capable of implementing
multi-level logic

Scalable in proportion with logic removing many of the size limitations

of PLD derived two level architecture

e FPGAs offer the benefit of both MPGAs and PLDs!
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FPGA - A Detail(d)%ook

* Based on the pringipleW/functional completeness

* FPGA: Functi omplete elements (Logic Blocks)
placed in ap< connect framework

o Interco%@ framework comprises of wire segments

and switcHes; Provide a means to interconnect logic

blocks

* Circuits are partitioned to logic block size, mapped and

routed




= A Fictitious FPGA Architecture

(With Multiplexer As Funotiob plete Cell)

e Basic building block Q/

D
0] ?I-ﬂip  Qux
lg-lg e °p
o >
jall l—(
(AYPlx with 3 selece inpxs (B)Wlux wihowxpx driving D—€lipflop
S: Sl so
Prognmmab be
5-5,5 mEmoly
elemen
Prognmmble
memory
elemancs
[ =
L2 | B
1 D-tlip ck | Baskbkcd | Oar

1'3?5 Plx [

- = >
B [
1
jals

K ) Selecoion of combimeional or sequemial oxpx (D) Shontand image of basi: building block
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Interconnectio

&

mework

® Granularity and interco@ectl n structure has caused a split

in the industry Q

bD: D Qo
brak beal¢ bl ¢
toldng bl ldrp
ok o, bk
o o E o,
I.D D o
el bxadc
kg bl 3
X LY Ho&
1y [>-2i

* Conadd 1w x4 ooupom Emen neiphton drg lopk: bio da o hich o nestoum
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Intercon neotio@gﬁework

— Coarse grained

(SPLD like blocks) \
— Programmable C %erconnect

structure

e CPLD QQ

— Interconnect structure uses continuous
metal lines

— The switch matrix may or may not be

fully populated
— Timing predictable if fully populated

— Architecture does not scale well

Cuom baima e
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Field Programm@%ﬁy

* Field programmab) 'ty%gchieved through switches

by memory elements or fuses)

(Transistors co

® Switches c N
Inter ction among wire segments
Con@ion of logic blocks

e Distributed memory elements controlling the switches

the following aspects

and configuration of logic blocks are together called

“Configuration Mernory”
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Technology of Pro r@%ﬁiable Elements

® Vary from vendor t¢fvepdor. All share the common

property: Confi@ in one of the two positions —
‘ON’ or ‘OFE-

d into three categories:
e SRAM bas
® Fuse based

e EPROM/EEPROM /Flash based

® Desired properties:

Minimum area consumption
Low on resistance; High off resistance
Low parasitic capacitance to the attached wire

Reliability in volume production
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SRAM ProgramQ/ﬁg Technology

Employs SRAM (Static Is to
control pass transistogs /or
transmission gat G\
SRAM cells h
logic block as

Volatile

e configuration of

® Needs an external storage

® Needs a power-on configuration

mechanism

® |n-circuit re—programmable
[esser configuration time

Occupies relatively larger area

SRAM
Cell

il

Routing
wile

Routing
wile

[A) pass {tansistol

Lhputs
1
SRAM Cells r rﬁ
()
[ :
Lloltiplexer
()
(1)
Outpot
(B) Multiplexer
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Anti-fuse Prograﬁfﬁ%g Technology
\Q&Xim /" Yoo

Metal 1

® Though implementation ditfer, all anti-fuse
programming elements share common property
® Uses materials which normally resides in high impedance state

® But can be fused irreversibly into low impedance state by

applying high Voltage
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Anti-fuse Progr @%ﬂng Technology

* Very low ON RGS@I Faster implementation of

circuits)

® Limited siz ti-fuse elements; Interconnects occupy

relative%r er area
e Offset : ger transistors needed for programming
® OneTime Programmable

* Cannot be re-programmed
(Design changes are not possible)

® Retain configuration after power off




‘EPROM. EEPROM or Flash Based
Programming Technol

% § ovheny )

* EPROM Programming Technology

® Two gates: Floating and Select
¢ Normal mode:
No charge on floating gate
Transistor behaves as normal n-channel transistor
* Floating gate charged by applying high voltage
Threshold of transistor (as seen by gate) increases

Transistor turned off permanently

° Re—programmable by exposing to UV radiation
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EPROM Progra rﬁij%TeChnology

b

N

g

5

B!

5

=

=

L

Sclect gate

® Used as pull-down devices

® Consumes static power
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EPROM Progranﬁgﬁfg Technology

0‘0

® No external anechanism
® Re-progr le (Not all!)
* Not in-system re—programmable

o Re—programming is a time consuming task

™
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EEPROM Progr @f(ﬂng Technology

* Two gates: Floatingian®&#elect
* Functionally e 'Qt to EPROM; Construction and

structure dj 2

o Electric% rasable: Re—programmable by applying high

voltage
(No UV radiation expose!)
® When un-programmed, the threshold (as seen by select

gate) is negative!
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EEPROM Progr@fng Technology

™
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EEPROM Progr @f(ﬂng Technology

O

Re—programmalﬂ&n general, in-system re-programmable

Re-progra onsumes lesser time compared to
EPROM t ology

Multiple Voltage sources may be required

Area occupied is twice that of EPROM!

™




/Ece

An Example

en=1

en=0 iy en=0

® Modulo-4 counter: Specificatio

O

O
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Des=igh
S pecifiction
Te=t Siimuli
L

Design Steps Involve

With FPGAS

Behwvioml|,. VH DL Veril

Simularion code Desigh Entry

O

Te=A Stimoh Svnchess n D Selecoon

Direcrives I . Files possible oprimizanon)

Funcdonal

M
tn
'

Ted Stimaoli

Simuhrio nl‘ TNt i

Nechs
15‘2‘5!‘5'1121;1'__ __T_-- ---J_ e

Wapping
(Oprcml)

| Device dependen
ForCPLD For EE

ol Maceand
Fixing Reoare

——————

Tut;‘rgxpo: _ Pom laveour

ol ~nodd with Biscream
Simulxion thaine Wb |

Repon Files
(abowx disming and | Arogrumming

resource ixiltacon)

(forimplemenacion)

Lser comemines

In Designing
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Commercially %@%ble Devices

® Architecture dn@rom vendor to vendor

® Characteriz
e Structu ontent of logic block

e Structure and content of routing resources

® To examine, look at some of available devices
® FPGA: Xilinx (XC4000)
e CPLD: Altera (MAX 5K)
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ALTERA CPLDS QQ/

Q ® Hierarchical PLD structure

¢ First level: LABs (Functional blocks);
LAB is similar to SPLDs

2 L SGCOIld Level: Interconnections among
%L% . LABS

" Logie
e .
T : —3 ® LAB consists of

20 - e i . : ® Product term array
[ Ay € Intetcohhect Arcy » & _ .
; Aslly g ® Product term distribution
2 — = 2

< < ® Macro-cells

< iy ity ® Expander product terms

- - ® Interconnection region: PIA

e EPROM/EEPROM based
* Example: MAX5K, MAX7K
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SRAM FPGA -é‘é'PROM FPGA
e An FPGA is smﬂ%@ several other types of

devices whlch@e been around for quite a

while, the d. ce being that an FPGA is
simply ore expandable and versatile.
The d which FPGAs get compared to
most are CPLDs (Complex

Programmable Logic Devices), which are
similar in function but typically have way less
logic gates inside them; Customizable CPU
design is much more feasible with an FPGA.
Once upon a time, CPLDs also had the
distinct advantage of retaining their
configuration even
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SRAM FPGA -é‘é'PROM FPGA

e when turned off; V\@ FPGAS first came out,

they used simp
configuratio
the device

RAM to hold their
«h of course would be lost when
power. Back then, the FPGA had
to be pr ed from scratch every time it was
turned sually from a separate serial ROM
chip. Buoday, FPGAs come in Flash, EPROM,
and EEPROM variants, which will retain
configuration, and which can also be re-
programmed. (Fuse and anti-fuse FPGAs also
exist, which act like PROMs in that they are one-
time programmable, and cannot be
reprogrammed
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SRAM FPGA -é‘é'PROM FPGA

o afterward.) DespiteXg#5, however, most FPGAs
still use SRAM %easons of simplicity (when you
need to rep am It, it's easier to re-encode a
small RO than to reprogram a large FPGA
chip), Qu’nt on having to use a separate boot
ROM e FPGA.

e Use of an FPGA is broadly divided into two main
stages: The first is "configuration mode", the
mode in which the FPGA is when you first power
it up. Configuration mode is, as you may have
guessed, where you configure the FPGA; That is,
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e this is when you@&our code into it, dictating

how the pins e. Once configuration is

complete, t PGA goes into "user mode", its

main m operation, where the programmed
|

circuit %‘ y starts functioning.
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Comparison:

e FPGA benefits vs ASICs: %
- Design time: 9 month design cyle g 2-3 years
- Cost: No $3-5 M up ) design cost.
No $100-50 sk=Set cost

- Volume: High initial cost recovered only in very high volume products

e Due to Moore’s %’%any ASIC market requirements now met by FPGAs
- Eg. Virtex Il Pro h cessors, 10 Mb memory, IO

Resulting Market Shift:

e Dramatic decline in number of ASIC design starts:
- 11,000 in 97
- 1,500 in '02

» FPGAs as a % of Logic market:
- Increase from 10 to 22% in past 3-4 years

» FPGAs (or programmable logic) is the fastest growing segment of the
semiconductor industry!!
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Cost — »

Production Volume —>
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ASIC \Q
A

(application-specific integrated circuit) is
designed for a special application, such as

a paMcular kind of transmission protocol or a hand-
held computer. You might contrast it with general
integrated circuits, such as the microprocessor and the
random access memory chips in your PC. ASICs are
used in a wide-range of applications, including auto
emission control, environmental monitoring, and
personal digital assistants ( S).
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