
UNIT-I

INTRODUCTION TO VLSI

 SWATHI E R

 LECTURER/ECE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

DIFFERENT LEVEL OF ABSTRACTIONS

IN VLSI DESIGN

ECE

SRIP
C E

CE

STEPS INVOLVED IN VLSI

DESIGN PROCESS

ECE

SRIP
C E

CE

LAYOUT

ECE

SRIP
C E

CE

STICK DIAGRAM

ROUTING

ECE

SRIP
C E

CE

UNIT-II

INTRODUCTION TO VHDL

 SWATHI E R

 LECTURER/ECE

ECE

SRIP
C E

CE

History of VHDL

• Designed by IBM, Texas Instruments, and Intermetrics as part of the

DoD funded VHSIC program

• Standardized by the IEEE in 1987: IEEE 1076-1987

• Enhanced version of the language defined in 1993: IEEE 1076-1993

• Additional standardized packages provide definitions of data types and

expressions of timing data

– IEEE 1164 (data types)

– IEEE 1076.3 (numeric)

– IEEE 1076.4 (timing)

ECE

SRIP
C E

CE

Traditional vs. Hardware Description Languages

• Procedural programming languages provide the how or recipes

– for computation

– for data manipulation

– for execution on a specific hardware model

• Hardware description languages describe a system

– Systems can be described from many different points of view

• Behavior: what does it do?

• Structure: what is it composed of?

• Functional properties: how do I interface to it?

• Physical properties: how fast is it?

ECE

SRIP
C E

CE

Usage

• Descriptions can be at different levels of abstraction

– Switch level: model switching behavior of transistors

– Register transfer level: model combinational and sequential logic

components

– Instruction set architecture level: functional behavior of a

microprocessor

• Descriptions can used for

– Simulation

• Verification, performance evaluation

– Synthesis

• First step in hardware design

ECE

SRIP
C E

CE

Why do we Describe Systems?

• Design Specification

– unambiguous definition of components and

interfaces in a large design

• Design Simulation

– verify system/subsystem/chip performance

prior to design implementation

• Design Synthesis

– automated generation of a hardware design

ECE

SRIP
C E

CE

Digital System Design Flow
Requirements

Functional Design

Register Transfer
Level Design

Logic Design

Circuit Design

Physical Design

Description for Manufacture

Behavioral Simulation

RTL Simulation
Validation

Logic Simulation

Verification

Timing Simulation

Circuit Analysis

Design Rule Checking

Fault Simulation

• Design flows operate at multiple

levels of abstraction

• Need a uniform description to

translate between levels

• Increasing costs of design and

fabrication necessitate greater

reliance on automation via CAD

tools

– $5M - $100M to design new

chips

– Increasing time to market

pressures

ECE

SRIP
C E

CE

A Synthesis Design Flow

Requirements

Functional Design

Register Transfer
Level Design

Synthesis

Place and Route

Timing Extraction

VHDL Model

(VHDL)

VHDL Model

Logic Simulation
 Behavioral Simulation

• Automation of design refinement steps

• Feedback for accurate simulation

• Example targets: ASICs, FPGAs

ECE

SRIP
C E

CE

The Role of Hardware Description Languages

cells

modules

chips

boards

algorithms

register transfers

Boolean expressions
transfer functions

processors
registers

gates
transistors

PHYSICAL

BEHAVIORAL STRUCTURAL

[Gajski and Kuhn]

• Design is structured around a hierarchy of representations

• HDLs can describe distinct aspects of a design at multiple

levels of abstraction

ECE

SRIP
C E

CE

Domains and Levels of Modeling

high level of

abstraction

Functional Structural

Geometric “Y-chart” due to
Gajski & Kahn

low level of

abstraction

ECE

SRIP
C E

CE

Domains and Levels of Modeling
Functional Structural

Geometric “Y-chart” due to
Gajski & Kahn

Algorithm

(behavioral)

Register-Transfer

Language

Boolean Equation

Differential Equation

ECE

SRIP
C E

CE

Domains and Levels of Modeling
Functional Structural

Geometric “Y-chart” due to
Gajski & Kahn

Processor-Memory

Switch

Register-Transfer

Gate

Transistor

ECE

SRIP
C E

CE

Domains and Levels of Modeling
Functional Structural

Geometric “Y-chart” due to
Gajski & Kahn

Polygons

Sticks

Standard Cells

Floor Plan

ECE

SRIP
C E

CE

Basic VHDL Concepts

• Interfaces

• Modeling (Behavior, Dataflow, Structure)

• Test Benches

• Analysis, elaboration, simulation

• Synthesis

ECE

SRIP
C E

CE

Basic Structure of a VHDL File

• Entity

– Entity declaration:

interface to outside

world; defines input

and output signals

– Architecture: describes

the entity, contains

processes, components

operating concurrently

ECE

SRIP
C E

CE

Entity Declaration

entity NAME_OF_ENTITY is

 port (signal_names: mode type;

 signal_names: mode type;

 :

 signal_names: mode type);

end [NAME_OF_ENTITY] ;

• NAME_OF_ENTITY: user defined

• signal_names: list of signals (both input and

output)

• mode: in, out, buffer, inout

• type: boolean, integer, character, std_logic

ECE

SRIP
C E

CE

Architecture

• Behavioral Model:

architecture architecture_name of NAME_OF_ENTITY
is

 -- Declarations

 …..
 …..

begin

 -- Statements
end architecture_name;

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

STATEMENTS

• An if…else statement is a sequential statement in VHDL which got

executed depending on the value of the condition. The if condition

tests each condition sequentially until the true condition is found.

• VHDL is a Hardware Description Language that is used to describe at

a high level of abstraction a digital circuit in an FPGA or ASIC. When

we need to perform a choice or selection between two or more

choices, we can use the VHDL conditional statement.

• VHDL entity example. The entity syntax is keyword “entity”,
followed by entity name and the keyword “is” and “port”. Then

inside parenthesis there is the ports declaration. In the port declaration

there are port name followed by colon, then port direction (in/out in

this example) followed by port type.

ECE

SRIP
C E

CE

Half Adder
library ieee;

use ieee.std_logic_1164.all;

entity half_adder is

port(

 x,y: in std_logic;

 sum, carry: out std_logic);

end half_adder;

architecture myadd of half_adder is

 begin

 sum <= x xor y;

 carry <= x and y;

end myadd;

ECE

SRIP
C E

CE

Entity Examples …

entity half_adder is

port(

 x,y: in std_logic;

 sum, carry: out std_logic);

end half_adder;

FULL ADDER

A

B

C

SUM

CARRY

ECE

SRIP
C E

CE

Architecture Examples: Behavioral Description

• Entity FULLADDER is

 port (A, B, C: in std_logic;

 SUM, CARRY: in std_logic);
end FULLADDER;

• Architecture CONCURRENT of FULLADDER is

begin

 SUM <= A xor B xor C after 5 ns;

 CARRY <= (A and B) or (B and C) or (A and C) after 3

ns;

end CONCURRENT;

ECE

SRIP
C E

CE

Architecture Examples: Structural Description …

• architecture STRUCTURAL of FULLADDER is

 signal S1, C1, C2 : bit;

 component HA

 port (I1, I2 : in bit; S, C : out bit);

 end component;

 component OR

 port (I1, I2 : in bit; X : out bit);

 end component;

begin

 INST_HA1 : HA port map (I1 => B, I2 => C, S => S1, C => C1);

 INST_HA2 : HA port map (I1 => A, I2 => S1, S => SUM, C => C2);

 INST_OR : OR port map (I1 => C2, I2 => C1, X => CARRY);

end STRUCTURAL;

I1 S

 HA
I2 C

I1 S

 HA
I2 C I1

 OR

I2 x

A

C

B

CARRY

SUM

S1

C1

C2

ECE

SRIP
C E

CE

… Architecture Examples: Structural
Description

Entity HA is

PORT (I1, I2 : in bit; S, C : out bit);

end HA ;

Architecture behavior of HA is

begin

 S <= I1 xor I2;

 C <= I1 and I2;

end behavior;

Entity OR is

PORT (I1, I2 : in bit; X : out bit);

end OR ;

Architecture behavior of OR is

begin

 X <= I1 or I2;

end behavior;

ECE

SRIP
C E

CE

One Entity Many Descriptions

• A system (an entity) can be specified with different

architectures

Entity

Architecture

A

Architecture

B

Architecture

C
Architecture

D

ECE

SRIP
C E

CE

Test Benches

• Testing a design by simulation

• Use a test bench model

– an architecture body that includes an instance

of the design under test

– applies sequences of test values to inputs

– monitors values on output signals

• either using simulator

• or with a process that verifies correct operation

ECE

SRIP
C E

CE

PROGRAM

• VHDL CODES:

• OR gate program

• library IEEE;

• use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL;

• use IEEE.STD_LOGIC_UNSIGNED.ALL;

• entity gate is

• Port (a : in STD_LOGIC; b : in STD_LOGIC;

• c : out STD_LOGIC); end gate;

• architecture Behavioral of gate is begin

• c <= a or b;

• end Behavioral;

• ANDgate Program

• library IEEE;

• use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL;

• use IEEE.STD_LOGIC_UNSIGNED.ALL;

• entity gate is

• Port (a : in STD_LOGIC; b : in STD_LOGIC;

• c : out STD_LOGIC); end gate;

• architecture Behavioral of gate is begin

• c <= a and b; end Behavioral;

ECE

SRIP
C E

CE

PROGRAM

• VHDL CODES:

• NOT gate program

• library IEEE;

• use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL;

• use IEEE.STD_LOGIC_UNSIGNED.ALL;

• entity gate is

• Port (a : in STD_LOGIC); end gate;

• architecture Behavioral of gate is begin

• c <= a not b;

• end Behavioral;

• NANDgate Program

• library IEEE;

• use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL;

• use IEEE.STD_LOGIC_UNSIGNED.ALL;

• entity gate is

• Port (a : in STD_LOGIC; b : in STD_LOGIC;

• c : out STD_LOGIC); end gate;

• architecture Behavioral of gate is begin

• c <= a nand b; end Behavioral;

ECE

SRIP
C E

CE

PROGRAM

• VHDL CODES:

• Nor gate Program

• library IEEE;

• use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL;

• use IEEE.STD_LOGIC_UNSIGNED.ALL;

• entity gate is

• Port (a : in STD_LOGIC; b : in STD_LOGIC;

• c : out STD_LOGIC); end gate;

• architecture Behavioral of gate is begin

• c <= a nand b; end Behavioral;

• Exor gate Program

• library IEEE;

• use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL;

• use IEEE.STD_LOGIC_UNSIGNED.ALL;

• entity gate is

• Port (a : in STD_LOGIC; b : in STD_LOGIC;

• c : out STD_LOGIC); end gate;

• architecture Behavioral of gate is begin

• c <= a exor b; end Behavioral;

ECE

SRIP
C E

CE

UNIT-III

COMBINATIONAL CIRCUIT DESIGN

 SWATHI E R

 LECTURER/ECE

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

HALF ADDER

ECE

SRIP
C E

CE

TRUTH TABLE

ECE

SRIP
C E

CE

FULL ADDER

ECE

SRIP
C E

CE

TRUTH TABLE

ECE

SRIP
C E

CE

HALF SUBTRACTOR

ECE

SRIP
C E

CE

TRUTH TABLE

ECE

SRIP
C E

CE

FULL SUBTRACTOR

ECE

SRIP
C E

CE

TRUTH TABLE

ECE

SRIP
C E

CE

4 TO 1 MUX

ECE

SRIP
C E

CE

1 TO 4 DEMUX

ECE

SRIP
C E

CE

4 TO 2 ENCODER

•

ECE

SRIP
C E

CE

2 TO 4 DECODER

ECE

SRIP
C E

CE

COMPARATOR

ECE

SRIP
C E

CE

4 BIT ADDER

ECE

SRIP
C E

CE

4 BIT SUBTRACTOR

ECE

SRIP
C E

CE

VHDL PROGRAM FOR HALF ADDER

ECE

SRIP
C E

CE

VHDL PROGRAM FOR FULL ADDER

ECE

SRIP
C E

CE

VHDL PROGRAM FOR HALF

SUBTRACTOR
• library IEEE;

• use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL;

• use IEEE.STD_LOGIC_UNSIGNED.ALL;

•

• Library ieee;

• use ieee.std_logic_1164.all;

•

• entity half_sub is

• port (a,b : in std_logic; dif,bo: out std_logic);

• end half_sub;

•

• architecture sub_arch of half_sub is begin

• dif <= a xor b;

• bo <= (not a) and b; end sub_arch;

ECE

SRIP
C E

CE

VHDL PROGRAM FOR FULL

SUBTRACTOR

• library IEEE;

• use IEEE.STD_LOGIC_1164.ALL; use
IEEE.STD_LOGIC_ARITH.ALL;

• use IEEE.STD_LOGIC_UNSIGNED.ALL;

•

• entity full_sub is

• port(a,b,c: in bit; sub, borrow:out bit); end full_sub;

• architecture data of full_sub is beginsub<= a xor b xor
c;

• borrow <= ((b xor c) and (not a))or (b and c);

• end data;

ECE

SRIP
C E

CE

VHDL PROGRAM FOR SINGLE BIT

DIGITAL COMPARATOR

• library IEEE;

• use IEEE.STD_LOGIC_1164.ALL;

• entity comparator_1bit is

• Port (A,B : in std_logic; G,S,E: out std_logic);

• end comparator_1bit;

• architecture comp_arch of comparator_1bit is
begin

• G <= A and (not B); S <= (not A) and B; E <= A xnor
B;

• end comp_arch;

ECE

SRIP
C E

CE

VHDL PROGRAM FOR ENCODER

• library IEEE;

• use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL;

• use IEEE.STD_LOGIC_UNSIGNED.ALL;

• entity first is

• port (input : in std_logic_vector(3 downto 0); output : out std_logic_vector(1
downto 0)); end first;

• architecture Behavioral of first is begin

• process(input) begin

• case input is

• when "0001" =>output <= "00";

• when "0010" =>output <= "10";

• when "0100" =>output <= "01";

• when "1000" =>output <= "11"; when others =>null;

• end case; end process;

• end Behavioral;

ECE

SRIP
C E

CE

VHDL PROGRAM FOR DECODER

• Libraryieee;

• use ieee.std_logic_1164.all; useieee.std_logic_arith.all;
useieee.std_logic_unsigned.all;

• entityobject_co is port(clk : in std_logic;

• sw : in std_logic_vector(3 downto 0); y : out
std_logic_vector(7 downto 0);

• -- sel : out std_logic_vector(5 downto 3) sel : out
std_logic_vector(5 downto 0)

•);

• endobject_co;

ECE

SRIP
C E

CE

Four bit Arithmetic adder

• LIBRARY IEEE;

• USE IEEE STD_LOGIC_1164.ALL;

• USE IEEE STD_LOGIC_ARITH.ALL;

• ENTITY ADDER_4 BIT IS

• PORT(A:IN STD _LOGIC_VECTOR(3 DOWN TO 0);
(B:IN STD _LOGIC_VECTOR(3 DOWN TO 0);

• CARRY:OUT STD_LOGIC;

• S:OUT STD_LOGIC _VECTOR(3 DOWN TO 0);

• END ADDER_4 BIT;

ECE

SRIP
C E

CE

• ARCHITECTURE ADDER_ARC OF ADDER_4 BIT
IS

• COMPONENT FA

• PORT(X:INSTD_LOGIC;

• Y:IN STD_LOGIC;

• CI:IN STD LOGIC;

• SUM:OUT STD_LOGIC;

• CY:OUT STD_LOGIC);

• END COMPONENT;

• SIGNAL C0,C1,C2,C3:STD_LKOGIC;

• BEGIN;

ECE

SRIP
C E

CE

• BBAR<=NOT B;

• FA0:FA PORT MAP(A(0)),BBAR(0),’1’,D(0)C(0);
• FA1:FA PORT MAP(A(1)),BBAR(0),’1’,D(0)C(0);
• FA2:FA PORT MAP(A(2)),BBAR(0),’1’,D(0)C(0);
• FA3:FA PORT MAP(A(3)),BBAR(0),’1’,D(0)C(0);
• CARRY<=C3;

• END ARCH_4;

ECE

SRIP
C E

CE

Four bit Arithmetic SUBTRACTOR

• LIBRARY IEEE;

• USE IEEE STD_LOGIC_1164.ALL;

• USE IEEE STD_LOGIC_ARITH.ALL;

• ENTITY SUB_4 BIT IS

• PORT(A:IN STD _LOGIC_VECTOR(3 DOWN TO 0);
(B:IN STD _LOGIC_VECTOR(3 DOWN TO 0);

• D:OUT STD_LOGIC;

• OV:OUT STD_LOGIC _VECTOR(3 DOWN TO 0);

• END SUB_4 BIT;

ECE

SRIP
C E

CE

• ARCHITECTURE SUB_ARC OF ADDER_4 BIT IS

• COMPONENT FA

• PORT(X:INSTD_LOGIC;

• Y:IN STD_LOGIC;

• CI:IN STD LOGIC;

• SUM:OUT STD_LOGIC;

• CY:OUT STD_LOGIC);

• END COMPONENT;

• SIGNAL C0,C1,C2,C3:STD_LKOGIC;

• BEGIN;

ECE

SRIP
C E

CE

• BBAR<=NOT B;

• FA0:FA PORT MAP(A(0)),BBAR(0),’1’,D(0)C(0);
• FA1:FA PORT MAP(A(1)),BBAR(0),’1’,D(0)C(0);
• FA2:FA PORT MAP(A(2)),BBAR(0),’1’,D(0)C(0);
• FA3:FA PORT MAP(A(3)),BBAR(0),’1’,D(0)C(0);
• OV<=C2 XOR C3;

• END SUB_4;

ECE

SRIP
C E

CE

UNIT-IV

SEQUENTIAL CIRCUIT DESIGN

 SWATHI E R

 LECTURER/ECE

ECE

SRIP
C E

CE

SEQUENTIAL CIRCUIT DESIGN

ECE

SRIP
C E

CE

JK FLIPFLOPS

ECE

SRIP
C E

CE

D FLIPFLOPS

ECE

SRIP
C E

CE

T FLIPFLOPS

ECE

SRIP
C E

CE

3 BIT SYNCHRONOUS UP COUNTER

ECE

SRIP
C E

CE

3 BIT SYNCHRONOUS DOWN COUNTER

ECE

SRIP
C E

CE

3 BIT SYNCHRONOUS UP/DOWN

ECE

SRIP
C E

CE

3 BIT ASYNCHRONOUS UP COUNTER

ECE

SRIP
C E

CE

3 BIT ASYNCHRONOUS DOWN

COUNTER

ECE

SRIP
C E

CE

3 BIT ASYNCHRONOUS UP/DOWN

COUNTER

ECE

SRIP
C E

CE

Decade counter

ECE

SRIP
C E

CE

RING COUNTER
ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

D FLIPFLOP

Library IEEE;

 USE IEEE.Std_logic_1164.all;

entity RisingEdge_DFlipFlop is

port(Q : out std_logic; Clk :in std_logic;

 D :in std_logic);

end RisingEdge_DFlipFlop;

 architecture Behavioral of RisingEdge_DFlipFlop is

 begin

 process(Clk)

begin if(rising_edge(Clk))

 then Q <= D;

end if;

end process;

 end Behavioral;

ECE

SRIP
C E

CE

D FLIPFLOP with RESET

Library IEEE;

 USE IEEE.Std_logic_1164.all;

entity RisingEdge_DFlipFlop is

port(reset,Q : out std_logic; Clk :in std_logic;

 D :in std_logic);

end RisingEdge_DFlipFlop;

 architecture Behavioral of RisingEdge_DFlipFlop is

 begin

 process(Clk)

Reset=“1 then temp=‘0’;”

begin if(rising_edge(Clk))

 then Q <= D;

end if;

end process;

 end Behavioral;

ECE

SRIP
C E

CE

T FLIP FLOPS

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity T_FF is

port(T: in std_logic;

Clock: in std_logic;

Q: out std_logic);

end T_FF;

architecture Behavioral of T_FF is

signal tmp: std_logic;

begin

process (Clock)

begin

if Clock'event and Clock='1' then

 if T='0' then

tmp <= tmp;

elsif T='1' then

tmp <= not (tmp);

end if;

end if;

end process;

Q <= tmp;

end Behavioral;

ECE

SRIP
C E

CE

T FLIP FLOPS with RESET

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity T_FF is

port(reset,T: in std_logic;

Clock: in std_logic;

Q: out std_logic);

end T_FF;

architecture Behavioral of T_FF is

signal tmp: std_logic;

begin

process (Clock)

begin

if Clock'event and Clock='1' then

Reset=“1 then temp=‘0’;”

 if T='0' then

tmp <= tmp;

elsif T='1' then

tmp <= not (tmp);

end if;

end if;

end process;

Q <= tmp;

end Behavioral;

ECE

SRIP
C E

CE

J K FLIP FLOPS

library ieee;

use ieee. std_logic_1164.all;

use ieee. std_logic_arith.all;

use ieee. std_logic_unsigned.all;

entity JK_FF is

PORT(J,K,CLOCK: in std_logic;

Q, QB: out std_logic);

end JK_FF;

Architecture behavioral of JK_FF is

begin

PROCESS(CLOCK)

variable TMP: std_logic;

begin

if(CLOCK='1' and CLOCK'EVENT) then

if(J='0' and K='0')then

TMP:=TMP;

elsif(J='1' and K='1')then

TMP:= not TMP;

elsif(J='0' and K='1')then

TMP:='0';

else

TMP:='1';

end if;

end if;

Q<=TMP;

Q <=not TMP;

end PROCESS;

end behavioral;

ECE

SRIP
C E

CE

J K FLIP FLOPS with RESET

library ieee;

use ieee. std_logic_1164.all;

use ieee. std_logic_arith.all;

use ieee. std_logic_unsigned.all;

entity JK_FF is

PORT(reset J,K,CLOCK: in std_logic;

Q, QB: out std_logic);

end JK_FF;

Architecture behavioral of JK_FF is

begin

PROCESS(CLOCK)

variable TMP: std_logic;

begin

if(CLOCK='1' and CLOCK'EVENT) then

Reset=“1 then temp=‘0’;”

if(J='0' and K='0')then

TMP:=TMP;

elsif(J='1' and K='1')then

TMP:= not TMP;

elsif(J='0' and K='1')then

TMP:='0';

else

TMP:='1';

end if;

end if;

Q<=TMP;

Q <=not TMP;

end PROCESS;

ECE

SRIP
C E

CE

VHDL code for synchronous

up-counter
library IEEE;

 use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL

; use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity SOURCE is

Port (CLK,RST : in STD_LOGIC;

 COUNT : in out STD_LOGIC_VECTOR (3 downto 0));

end SOURCE;

architecture Behavioral of SOURCE is

begin

process (CLK,RST)

begin if (RST = '1')

then COUNT <= "0000";

elsif(rising_edge(CLK))

then COUNT <= COUNT+1;

end if;

end process;

end Behavioral;

ECE

SRIP
C E

CE

VHDL code for synchronous

down-counter
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity is

 Port (clk,rst : in STD_LOGIC;

 count : out STD_LOGIC_VECTOR (3 downto 0));

end;

architecture Behavioral of down_count is

signal temp:std_logic_vector(3 downto 0);

begin process(clk,rst)

begin if(rst='1')

then temp<="1111";

elsif(rising_edge(clk))

then temp<=temp-1;

 end if;

end process;

 count<=temp;

end Behavioral;

ECE

SRIP
C E

CE

VHDL code for synchronous

updown-counter
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

 use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity updown_count is

 Port (clk,rst,updown : in STD_LOGIC;

 count : out STD_LOGIC_VECTOR (3 downto 0));

end updown_count;

architecture Behavioral of updown_count is

signal temp:std_logic_vector(3 downto 0):="0000";

Begin

 process(clk,rst)

begin if(rst='1')

then temp<="0000“

; elsif(rising_edge(clk))

then if(updown='0')

then temp<=temp+1;

else temp<=temp-1;

end if; end if;

end process;

count<=temp;

end Behavioral;

ECE

SRIP
C E

CE

VHDL CODE FOR DECADE COUNTER

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity decade is

 Port (CLOCK : in STD_LOGIC;

 RESET : in STD_LOGIC;

 Q : out STD_LOGIC_VECTOR (3 downto 0));

end decade;

architecture Behavioral of decade is

signal q_tmp: std_logic_vector(3 downto 0):= "0000";

begin

process(CLOCK,RESET)

begin

if RESET = '1' then

 count <= "0000";

Else if clock’event AND clock=‘1’ then
If count<count+’1’;
Else

 count <= "0000";

 end if

Q <= count;

end process;

end Behavioral;

ECE

SRIP
C E

CE

VHDL CODE FOR RING COUNTER

• library IEEE;

• use IEEE.STD_LOGIC_1164.ALL;

•

• entity Ring_counter is

• Port (CLOCK : in STD_LOGIC;

• RESET : in STD_LOGIC;

• Q : out STD_LOGIC_VECTOR (3 downto 0));

• end Ring_counter;

•

• architecture Behavioral of Ring_counter is

• signal q_tmp: std_logic_vector(3 downto 0):= "0000";

• begin

• process(CLOCK,RESET)

• begin

• if RESET = '1' then

• q_tmp <= "0001";

• elsif Rising_edge(CLOCK) then

• q_tmp(1) <= q_tmp(0);

• q_tmp(2) <= q_tmp(1);

• q_tmp(3) <= q_tmp(2);

• q_tmp(0) <= q_tmp(3);

• end if;

• end process;

• Q <= q_tmp;

• end Behavioral;

ECE

SRIP
C E

CE

VHDL CODE FOR JOHNSON COUNTER

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity Johnson_counter is

Port (clk : in STD_LOGIC;

rst : in STD_LOGIC;

Q : out STD_LOGIC_VECTOR (3 downto 0));

end Johnson_counter;

architecture Behavioral of Johnson_counter is

signal temp: std_logic_vector(3 downto 0):= "0000";

begin

process(clk,rst)

begin

if rst = '1' then

temp <= "0000";

elsif Rising_edge(clk) then

temp(1) <= temp(0);

temp(2) <= temp(1);

temp(3) <= temp(2);

temp(0) <= not temp(3);

end if;

end process;

Q <= temp;

end Behavioral;

ECE

SRIP
C E

CE

UNIT-V
PROGRAMMABLE LOGIC

DEVICES

BY
SWATHI E R
LECTURER

ECE

ECE

SRIP
C E

CE

PROM

PROM chips have several different applications,

including cell phones, video game consoles, RFID tags,

medical devices, and other electronics. They provide a

simple means of programming electronic devices. Standard

PROM can only be programmed once.

ECE

SRIP
C E

CE

PAL

Programmable Array Logic (PAL) is a type of semiconductor used to

implement logic functions in digital circuits. PAL is a type of

programmable logic device, which is a term for an integrated circuit

that can be programmed in a laboratory to perform complex functions

ECE

SRIP
C E

CE

COMPARE PROM PAL PLA

ECE

SRIP
C E

CE

 Available choice for digital designer
 FPGA – A detailed look
 Interconnection Framework

 FPGAs and CPLDs

 Field programmability and programming technologies
 SRAM, Anti-fuse, EPROM and EEPROM

ECE

SRIP
C E

CE

Designer’s Choice

 Digital designer has various options
 SSI (small scale integrated circuits) or MSI (medium scale

integrated circuits) components
 Difficulties arises as design size increases
 Interconnections grow with complexity resulting in a prolonged testing

phase

 Simple programmable logic devices
 PALs (programmable array logic)
 PLAs (programmable logic array)

 Architecture not scalable; Power consumption and delays play an
important role in extending the architecture to complex designs

 Implementation of larger designs leads to same difficulty as that of discrete
components

ECE

SRIP
C E

CE

Designer’s Choice

 Quest for high capacity; Two choices available
 MPGA (Masked Programmable Logic Devices)

 Customized during fabrication

 Low volume expensive

 Prolonged time-to-market and high financial risk

 FPGA (Field Programmable Logic Devices)
 Customized by end user

 Implements multi-level logic function

 Fast time to market and low risk

ECE

SRIP
C E

CE

FPGA – A Quick Look

 Two dimensional array of customizable logic block
placed in an interconnect array

 Like PLDs programmable at users site

 Like MPGAs, implements thousands of gates of logic in
a single device

 Employs logic and interconnect structure capable of implementing
multi-level logic

 Scalable in proportion with logic removing many of the size limitations
of PLD derived two level architecture

 FPGAs offer the benefit of both MPGAs and PLDs!

ECE

SRIP
C E

CE

FPGA – A Detailed Look
 Based on the principle of functional completeness

 FPGA: Functionally complete elements (Logic Blocks)
placed in an interconnect framework

 Interconnection framework comprises of wire segments
and switches; Provide a means to interconnect logic
blocks

 Circuits are partitioned to logic block size, mapped and
routed

ECE

SRIP
C E

CE

A Fictitious FPGA Architecture
(With Multiplexer As Functionally Complete Cell)

 Basic building block

ECE

SRIP
C E

CE

Interconnection Framework
 Granularity and interconnection structure has caused a split

in the industry

 FPGA

– Fine grained

– Variable length
interconnect segments

– Timing in general is not
predictable; Timing
extracted after placement
and route

ECE

SRIP
C E

CE

Interconnection Framework

 CPLD
– Coarse grained
 (SPLD like blocks)
– Programmable crossbar interconnect

structure
– Interconnect structure uses continuous

metal lines
– The switch matrix may or may not be

fully populated
– Timing predictable if fully populated
– Architecture does not scale well

ECE

SRIP
C E

CE

Field Programmability
 Field programmability is achieved through switches

(Transistors controlled by memory elements or fuses)

 Switches control the following aspects
 Interconnection among wire segments

 Configuration of logic blocks

 Distributed memory elements controlling the switches
and configuration of logic blocks are together called
“Configuration Memory”

ECE

SRIP
C E

CE

Technology of Programmable Elements

 Vary from vendor to vendor. All share the common
property: Configurable in one of the two positions –
‘ON’ or ‘OFF’

 Can be classified into three categories:
 SRAM based
 Fuse based
 EPROM/EEPROM/Flash based

 Desired properties:
 Minimum area consumption
 Low on resistance; High off resistance
 Low parasitic capacitance to the attached wire
 Reliability in volume production

ECE

SRIP
C E

CE

SRAM Programming Technology

 Employs SRAM (Static RAM) cells to
control pass transistors and/or
transmission gates

 SRAM cells control the configuration of
logic block as well

 Volatile

 Needs an external storage

 Needs a power-on configuration
mechanism

 In-circuit re-programmable

 Lesser configuration time

 Occupies relatively larger area

ECE

SRIP
C E

CE

Anti-fuse Programming Technology

 Though implementation differ, all anti-fuse
programming elements share common property
 Uses materials which normally resides in high impedance state

 But can be fused irreversibly into low impedance state by
applying high voltage

ECE

SRIP
C E

CE

Anti-fuse Programming Technology
 Very low ON Resistance (Faster implementation of

circuits)

 Limited size of anti-fuse elements; Interconnects occupy
relatively lesser area
 Offset : Larger transistors needed for programming

 One Time Programmable
 Cannot be re-programmed

 (Design changes are not possible)

 Retain configuration after power off

ECE

SRIP
C E

CE

EPROM, EEPROM or Flash Based

Programming Technology

 EPROM Programming Technology
 Two gates: Floating and Select
 Normal mode:

 No charge on floating gate
 Transistor behaves as normal n-channel transistor

 Floating gate charged by applying high voltage
 Threshold of transistor (as seen by gate) increases
 Transistor turned off permanently

 Re-programmable by exposing to UV radiation

ECE

SRIP
C E

CE

EPROM Programming Technology

 Used as pull-down devices

 Consumes static power

ECE

SRIP
C E

CE

EPROM Programming Technology

 No external storage mechanism

 Re-programmable (Not all!)

 Not in-system re-programmable

 Re-programming is a time consuming task

ECE

SRIP
C E

CE

EEPROM Programming Technology
 Two gates: Floating and Select

 Functionally equivalent to EPROM; Construction and
structure differ

 Electrically Erasable: Re-programmable by applying high
voltage

 (No UV radiation expose!)

 When un-programmed, the threshold (as seen by select
gate) is negative!

ECE

SRIP
C E

CE

EEPROM Programming Technology

ECE

SRIP
C E

CE

EEPROM Programming Technology

 Re-programmable; In general, in-system re-programmable

 Re-programming consumes lesser time compared to
EPROM technology

 Multiple voltage sources may be required

 Area occupied is twice that of EPROM!

ECE

SRIP
C E

CE

An Example

 Modulo-4 counter: Specification  Modulo-4 counter: Logic

Implementation

ECE

SRIP
C E

CE

FPGA Implementation of Modulo-4

Counter

ECE

SRIP
C E

CE

Design Steps Involved in Designing

With FPGAs

 Understand and define design

requirements

 Design description

 Behavioural simulation (Source

code interpretation)

 Synthesis

 Functional or Gate level

simulation

 Implementation

 Fitting

 Place and Route

 Timing or Post layout simulation

 Programming, Test and Debug

ECE

SRIP
C E

CE

Commercially Available Devices

 Architecture differs from vendor to vendor
 Characterized by

 Structure and content of logic block
 Structure and content of routing resources

 To examine, look at some of available devices
 FPGA: Xilinx (XC4000)
 CPLD: Altera (MAX 5K)

ECE

SRIP
C E

CE

ALTERA CPLDS

 Hierarchical PLD structure
 First level: LABs (Functional blocks);

LAB is similar to SPLDs
 Second Level: Interconnections among

LABs

 LAB consists of
 Product term array
 Product term distribution
 Macro-cells
 Expander product terms

 Interconnection region: PIA

 EPROM/EEPROM based

 Example: MAX5K, MAX7K

 Altera generic architecture

ECE

SRIP
C E

CE

SRAM FPGA -- EEPROM FPGA
 An FPGA is similar to several other types of

devices which have been around for quite a
while, the difference being that an FPGA is
simply much more expandable and versatile.
The devices which FPGAs get compared to
most often are CPLDs (Complex
Programmable Logic Devices), which are
similar in function but typically have way less
logic gates inside them; Customizable CPU
design is much more feasible with an FPGA.
Once upon a time, CPLDs also had the
distinct advantage of retaining their
configuration even

ECE

SRIP
C E

CE

SRAM FPGA -- EEPROM FPGA
 when turned off; When FPGAs first came out,

they used simple SRAM to hold their
configuration, which of course would be lost when
the device lost power. Back then, the FPGA had
to be programmed from scratch every time it was
turned on, usually from a separate serial ROM
chip. But today, FPGAs come in Flash, EPROM,
and EEPROM variants, which will retain
configuration, and which can also be re-
programmed. (Fuse and anti-fuse FPGAs also
exist, which act like PROMs in that they are one-
time programmable, and cannot be
reprogrammed

ECE

SRIP
C E

CE

SRAM FPGA -- EEPROM FPGA
 afterward.) Despite this, however, most FPGAs

still use SRAM for reasons of simplicity (when you
need to reprogram it, it's easier to re-encode a
small ROM chip than to reprogram a large FPGA
chip), so count on having to use a separate boot
ROM for the FPGA.

 Use of an FPGA is broadly divided into two main
stages: The first is "configuration mode", the
mode in which the FPGA is when you first power
it up. Configuration mode is, as you may have
guessed, where you configure the FPGA; That is,

ECE

SRIP
C E

CE

SRAM FPGA -- EEPROM FPGA
 this is when you load your code into it, dictating

how the pins behave. Once configuration is
complete, the FPGA goes into "user mode", its
main mode of operation, where the programmed

circuit actually starts functioning.

ECE

SRIP
C E

CE

Product – FPGA vs ASIC
Comparison:

 FPGA benefits vs ASICs:
- Design time: 9 month design cycle vs 2-3 years
- Cost: No $3-5 M upfront (NRE) design cost.
 No $100-500K mask-set cost
- Volume: High initial ASIC cost recovered only in very high volume products

 Due to Moore’s law, many ASIC market requirements now met by FPGAs
- Eg. Virtex II Pro has 4 processors, 10 Mb memory, IO

Resulting Market Shift:

 Dramatic decline in number of ASIC design starts:
 - 11,000 in ’97
 - 1,500 in ’02

 FPGAs as a % of Logic market:
- Increase from 10 to 22% in past 3-4 years

 FPGAs (or programmable logic) is the fastest growing segment of the
semiconductor industry!!

ECE

SRIP
C E

CE

FPGA/ASIC Crossover Changes

Production Volume

C
o

st

FPGA Cost Advantage ASIC Cost Advantage FPGA Cost Advantage ASIC Cost Advantage FPGA Cost Advantage

ECE

SRIP
C E

CE

Taxonomy of FPGAs

Island Cellular

SRAM
Programmed Antifuse Programmed

channeled

EPROM
Programmed

Array

FPGA

ECE

SRIP
C E

CE

ECE

SRIP
C E

CE

