PROJECTIONS OF PLANES

A plane is a two dimensional object having length and breadth only. Its thickness is always neglected. Various shapes of plane figures are considered such as square, rectangle, circle, pentagon, hexagon, etc.

PROJECTIONS OF PLANES

In this topic various plane figures are the objects.

What is usually asked in the problem?

To draw their projections means F.V, T.V. \& S.V.

What will be given in the problem?

1. Description of the plane figure.
2. It's position with HP and VP.

In which manner it's position with HP \& VP will be described?
1.Inclination of it's SURFACE with one of the reference planes will be given.
2. Inclination of one of it's EDGES with other reference plane will be given (Hence this will be a case of an object inclined to both reference Planes.)

Study the illustration showing
surface \& side inclination given on next page.

CASE OF A RECTANGLE - OBSERVE AND NOTE ALL STEPS.

SURFACE PARALLEL TO HP
PICTORIAL PRESENTATION

SURFACE INCLINED TO HP PICTORIAL PRESENTATION

TV- Reduced Shape

Problem 1:

Rectangle 30 mm and 50 mm sides is resting on HP on one small side which is 30^{0} inclined to VP,while the surface of the plane makes 45° inclination with HP. Draw it's projections.

Read problem and answer following questions

1. Surface inclined to which plane? ------- HP
2. Assumption for initial position? ------// to HP
3. So which view will show True shape? --- TV
4. Which side will be vertical? ---One small side.

Hence begin with TV, draw rectangle below X-Y drawing one small side vertical.

Problem 2:

A $30^{\circ}-60^{\circ}$ set square of longest side 100 mm long, is in VP and 30° inclined to HP while it's surface is 45° inclined to VP.Draw it's projections
(Surface \& Side inclinations directly given)

Read problem and answer following questions 1.Surface inclined to which plane? ------- VP 2. Assumption for initial position? ------// to VP
3. So which view will show True shape? --- FV
4. Which side will be vertical? ------longest side.

Hence begin with FV, draw triangle above X-Y keeping longest side vertical.

Problem 3:

A $30^{\circ}-60^{\circ}$ set square of longest side 100 mm long is in VP and it's surface 45° inclined to VP. One end of longest side is 10 mm and other end is 35 mm above HP. Draw it's projections
(Surface inclination directly given. Side inclination indirectly given)

Read problem and answer following questions 1.Surface inclined to which plane? ------- VP
2. Assumption for initial position? ------// to VP
3. So which view will show True shape? --- FV
4. Which side will be vertical? ------longest side.

Hence begin with FV, draw triangle above X-Y

keeping longest side vertical.

First TWO steps are similar to previous problem. Note the manner in which side inclination is given. End $A 35 \mathrm{~mm}$ above Hp \& End B is 10 mm above Hp . So redraw $2^{\text {nd }} \mathrm{Fv}$ as final Fv placing these ends as said.

Problem 4:

A regular pentagon of 30 mm sides is resting on HP on one of it's sides with it's surface 45° inclined to HP .
Draw it's projections when the side in HP makes 30° angle with VP

SURFACE AND SIDE INCLINATIONS

 ARE DIRECTLY GIVEN.Read problem and answer following questions

1. Surface inclined to which plane? ------- HP
2. Assumption for initial position? ------ // to HP
3. So which view will show True shape? --- TV
4. Which side will be vertical? -------- any side.

Hence begin with TV,draw pentagon below
$X-Y$ line, taking one side vertical.

Problem 5:

A regular pentagon of 30 mm sides is resting on HP on one of it's sides while it's opposite vertex (corner) is 30 mm above HP. Draw projections when side in HP is 30° inclined to VP.
sURFACE INCLINATION INDIRECTLY GIVEN SIDE INCLINATION DIRECTLY GIVEN:

Read problem and answer following questions

1. Surface inclined to which plane? ------- $\boldsymbol{H P}$
2. Assumption for initial position? ------ // to HP
3. So which view will show True shape? --- TV
4. Which side will be vertical? --------any side. Hence begin with TV,draw pentagon below
X-Y line, taking one side vertical.

ONLY CHANGE is

the manner in which surface inclination is described:
One side on Hp \& it's opposite corner 30 mm above Hp.
Hence redraw $1^{\text {st }} \mathrm{Fv}$ as a $2^{\text {nd }}$ Fv making above arrangement.
Keep a'b' on xy \& d' 30 mm above xy .

Problem 8: A circle of 50 mm diameter is resting on Hp on end A of it's diameter AC which is 30° inclined to Hp while it's Tv is 45^{0} inclined to $V p$. Draw it's projections.

Read problem and answer following questions 1. Surface inclined to which plane? \qquad
2. Assumption for initial position? ------ // to HP
3. So which view will show True shape? --- TV
4. Which diameter horizontal? ---------- $\boldsymbol{A C}$

Hence begin with TV,draw rhombus below $X-Y$ line, taking longer diagonal // to $X-Y$

Problem 9: A circle of 50 mm diameter is resting on Hp on end A of it's diameter AC which is 30° inclined to Hp while it makes 45^{0} inclined to $V p$. Draw it's projections.

Note the difference in construction of $3^{\text {rd }}$ step in both solutions.

The difference in these two problems is in step 3 only. In problem no. 8 inclination of Tv of that AC is given, It could be drawn directly as shown in $3^{\text {rd }}$ step. While in no. 9 angle of AC itself i.e. it's $T L$, is given. Hence here angle of TL is taken,locus of c_{1} Is drawn and then LTV I.e. $a_{1} c_{1}$ is marked and final TV was completed.Study illustration carefully.

Problem 10: End A of diameter $A B$ of a circle is in HP and end B is in VP.Diameter $A B, 50 \mathrm{~mm}$ long is 30° \& 60° inclined to HP \& VP respectively. Draw projections of circle.

Read problem and answer following questions

1. Surface inclined to which plane? ------- HP
2. Assumption for initial position? ------ // to HP
3. So which view will show True shape? --- TV
4. Which diameter horizontal? --------- $\boldsymbol{A B}$

Hence begin with TV,draw CIRCLE below
X-Y line, taking DIA. AB // to $X-Y$

The problem is similar to previous problem of circle - no.9.

But in the $3^{\text {rd }}$ step there is one more change.
Like $9^{\text {th }}$ problem True Length inclination of dia.AB is definitely expected
but if you carefully note - the the SUM of it's inclinations with HP \& VP is 90°.
Means Line AB lies in a Profile Plane.
Hence it's both Tv \& Fv must arrive on one single projector.
So do the construction accordingly AND note the case carefully..

Problem 11:

A hexagonal lamina has its one side in HP and Its apposite parallel side is 25 mm above Hp and In Vp. Draw it's projections.
Take side of hexagon 30 mm long.

Read problem and answer following questions

1. Surface inclined to which plane? ------- HP
2. Assumption for initial position? ------ // to HP
3. So which view will show True shape? --- TV
4. Which diameter horizontal? --------- $\boldsymbol{A C}$

Hence begin with TV,draw rhombus below $X-Y$ line, taking longer diagonal // to $X-Y$

ONLY CHANGE is the manner in which surface inclination is described:
One side on Hp \& it's opposite side 25 mm above Hp .
Hence redraw $1^{\text {st }} \mathrm{Fv}$ as a $2^{\text {nd }} \mathrm{Fv}$ making above arrangement Keep a'b' on xy \& d'e' 25 mm above xy .

FREELY SUSPENDED CASES.

IMPORTANT POINTS

Problem 12:

An isosceles triangle of 40 mm long base side, 60 mm long altitude ls freely suspended from one corner of Base side. It's plane is 45° inclined to Vp. Draw it's projections.
1.In this case the plane of the figure always remains perpendicular to Hp . 2.It may remain parallel or inclined to Vp.
3.Hence TV in this case will be always a LINE view.
4.Assuming surface // to Vp, draw true shape in suspended position as FV. (Here keep line joining point of contact \& centroid of fig, vertical) 5.Always begin with FV as a True Shape but in a suspended position. AS shown in $1^{\text {st }} \mathrm{FV}$.

First draw a given triangle With given dimensions, Locate it's centroid position And join it with point of suspension.

IMPORTANT POINTS

Problem 13

:A semicircle of 100 mm diameter is suspended from a point on its straight edge 30 mm from the midpoint of that edge so that the surface makes an angle of 45° with VP.
Draw its projections.
1.In this case the plane of the figure always remains perpendicular to Hp . 2.It may remain parallel or inclined to Vp .
3. Hence TV in this case will be always a LINE view.
4.Assuming surface // to Vp, draw true shape in suspended position as FV. (Here keep line joining point of contact \& centroid of fig. vertical)
5.Always begin with FV as a True Shape but in a suspended position.

AS shown in $1^{\text {st }} \mathrm{FV}$.

First draw a given semicircle With given diameter, Locate it's centroid position And
join it with point of suspension.

BY USING AUXILIARY PLANE METHOD

WHAT WILL BE THE PROBLEM?

Description of final Fv \& Tv will be given.
You are supposed to determine true shape of that plane figure.

Follow the below given steps:

1. Draw the given Fv \& Tv as per the given information in problem.
2. Then among all lines of Fv \& Tv select a line showing True Length (T.L.) (It's other view must be // to xy)
3. Draw $x_{1}-y_{1}$ perpendicular to this line showing T.L.
4. Project view on $x_{1}-y_{1}$ (it must be a line view)
5. Draw $x_{2}-y_{2} / /$ to this line view \& project new view on it.

It will be the required answer i.e. True Shape.

Problem 14 Tv is a triangle abc. Ab is 50 mm long, angle cab is 300 and angle cba is 650. $a^{\prime} b^{\prime} c^{\prime}$ is a $F v$. a^{\prime} is $25 \mathrm{~mm}, b^{\prime}$ is 40 mm and c' is 10 mm above Hp respectively. Draw projections of that figure and find it's true shape.

As per the procedure-

1.First draw Fv \& Tv as per the data.
2.In Tv line $a b$ is // to $x y$ hence it's other view a'b' is TL. So draw $x_{1} y_{1}$ perpendicular to it.
3.Project view on x1y1.
a) First draw projectors from a'b' \& c' on $x_{1} y_{1}$.
b) from $x y$ take distances of $a, b \& c(T v)$ mark on these projectors from $x_{1} y_{1}$. Name points a1b1 \& c1.
c) This line view is an Aux.Tv. Draw $x_{2} y_{2} / /$ to this line view and project Aux. Fv on it.
for that from $x_{1} y_{1}$ take distances of $a^{\prime} b^{\prime} \& c^{\prime}$ and mark from $x_{2} y=$ on new projectors.
4. Name points $a^{\prime}{ }_{1} b^{\prime}{ }_{1} \& c^{\prime}{ }_{1}$ and join them. This will be the required true shape.

PROBLEM 15: Fv \& Tv both are circles of 50 mm diameter. Determine true shape of an elliptical plate.

Problem 16 : Draw a regular pentagon of
30 mm sides with one side 30° inclined to xy .
This figure is Tv of some plane whose Fv is
A line 45^{0} inclined to $x y$.
Determine it's true shape.

N THIS CASE ALSO TRUE LENGTH IS NOT AVAILABLE IN ANY VIEW.

BUT ACTUALLY WE DONOT REQUIRE TL TO FIND IT'S TRUE SHAPE, AS ONE VIEW (FV) IS ALREADY A LINE VIEW. SO JUST BY DRAWING X1Y1 // TO THIS VIEW WE CAN PROJECT VIEW ON IT AND GET TRUE SHAPE:

STUDY THE ILLUSTRATION..

CHAPTER 4

PROJECTIONS OF SOLIDS

Problem 1 A square prism 35 mm sides of base and 65 mm axis length rests on HP on one of its edges of the base which is inclined to VP at 30°. Draw the projections of the prism when the axis is inclined to HP at 45°. Solution

Problem 2 A square prism 35 mm sides of base and 60 mm axis length rests on HP on one of its corners of the base such that the two base edges containing the comer on which it rests make equal inclinations with HP. Draw the projections of the prism when the axis of the prism is inclined to HP at 40° and appears to be inclined to VP at 45°.

Solution

Problem 3 A square prism 35 mm sides of base and 60 mm axis length rests on HP on one of its comers of the base such that the two base edges containing the comer on which it rests make equal inclinations with HP. Draw the projections of the prism when the axis of the prism is inclined to HP at 40° and to VP at 30°.

Solution

Problem 4 A square prism 35 mm sides of base and 60 mm axis length rests on HP on one of its edges of the base. Draw the projections of the prism when the axis is inclined to HP at 45° and VP at 30°.
Solution

Problem 5 A pentagonal prism 25 mm sides of base and 60 mm axis length rests on HP on one of its edges of the base which is inclined to VP at 30°. Draw the projections of the prism when the axis is inclined to HP at 40°. Solution

Problem 6 A pentagonal prism 25 mm sides of base and 60 mm axis length rests on HP on one of its edges of the base. Draw the projections of the prism when the axis is inclined to HP at 40° and VP at 30°.

Solution

Problem 7 A pentagonal prism 25 mm sides of base and 50 mm axis length rests on HP on one of its comers of the base such that the two base edges containing the corner on which it rests make equal inclinations with HP. Draw the projections of the prism when the axis of the prism is inclined to HP at 40° and appears to be inclined to VP at 45^{2}.

Solution

Problem 8 A pentagonal prism 25 mm sides of base and 50 mm axis length rests on HP on one of its comers of the base such that the two base edges containing the comer on which it rests make equal inclinations with HP. Draw the projections of the prism when the axis of the prism is inclined to HP at 40° and to VP at 30°.
Solution

Problem 9 A hexagonal prism 25 mm sides of base and 50 mm axis length rests on HP on one of its edges. Draw the projections of the prism when the axis is inclined to HP at 45° and appears to be inclined to VP 40°. Solution

Problem 10 A hexagonal prism 25 mm sides of base and 50 mm axis tength rests on HP on one of its edges of the base. Draw the projections of the prism when the axis is inclined to HP at 45° and VP at 30°. Solution

Problem 11 A hexagonal prism 25 mm sides of base and 50 mm axis length rests on HP on one of its comers of the base such that the two base edges containing the corner on which it rests make equal inclinations with HP. Draw the projections of the prism when the axis of the prism is inclined to HP at 40° and appears to be inclined to VP at 45°. Solution

Problem 12 A hexagonal prism 25 mm sides of base and 50 mm axis length rests on HP on one of its comers of the base such that the two base edges containing the comer on which it rests make equal inclinations with HP. Draw the projections of the prism when the axis of the prism is inclined to HP at 40° and to VP at 30°. Solution

Problem 13 A square prism 35 mm sides of base and 60 mm axis length is suspended freely from a corner of its base. Draw the projections of the prism when the axis appears to be inclined to VP at 45°.
Solution

Problem 14 A pentagonal prism 25 mm sides of base and .50 mm axis length is suspended freely from a corner of its base. Draw the projections of the prism when the axis appears to be inclined to VP at 45°.

Solution

Problem 16 A hexagonal prism 25 mm sides of base and 50 mm axis length is suspended freely from a comer of its base. Draw the projections of the prism when the axis appears to be inclined to VP at 45°. Solution

Problem 16A square pyramid 35 mm sides of base and 65 mm axis length rests on HP on one of its edges of the base which is inclined to VP at 30°. Draw the profections of the pyramid when the axis is inclined to HP at 45°.

Solution

Problem 17 A square pyramid 35 mm sides of base and 60 mm axis length rests on HP on one of its comers of the base such that the two base edges containing the corner on which it rests make equal inclinations with HP. Draw the projections of the pyramid when the axis of the pyramid is inclined to HP at 40° and appears to be inclined to VP at 45°.

Solution

Problem 18 A squerepyramid 35 mm sides of base and 60 mm axis length rests on HP on one of this comers of the projection te of the pyramid when the axis of the pyramid is inclined to HP at 40° and to VP at 30°. Solution

Problem 19 A square pyramid 35 mm sides of base and 60 mm axis length rests on HP on one of its edges of the base. Draw the projections of the pyramid when the axis is inclined to HP at 45° and VP at 30°.

Solution

Problem 20 A pentagonal pyramid 25 mm sides of base and 60 mm axis length rests on HP on one of its edges of the base which is inclined to VP at 30°. Draw the projections of the pyramid when the axis is inclined to HP at 40°. Solution

Problem 21 A pentagonal pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of its edges of the base. Draw the projections of the pyramid when the axis is inclined to HP at 45° and VP at 30°. Solution

Problem 22 A pentagonal pyramid 25.mm sides of base and 50 mm axis length reets on HP on one of ths comers of the bese such that the two baes edges containing the corner on which it reats make equal inclinations with HP. Draw the projections of the pyramid when the axis of the pyramid is inclined to HP at 40° and appears to be inctined to VP at 45^{2}.
Solution

Problem 23 A pentagonal pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of its comers of the base such that the two base edges containing the comer on which it rests make equal inclinations with HP. Draw the projections of the pyramid when the axis of the pyramid is inclined to HP at 40° and to VP at 30°.

Solution

Problem 24 A hexagonal pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of its edges of the base which is inclined to VP at 30°. Draw the projections of the pyramid when the axis is inclined to HP at 45°. Solution

Problem 25 A hexagonal pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of its edges of the base. Draw the projections of the pyramid when the axis is inclined to HP at 45° and VP at 30°. Solution

Problem 28 A hexagonel pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of its corners of the base such that the two bate edges containing the comer on which it rests make equal inclinations with HP. Draw the projections of the pyramid when the axis of the pyramid is inclined to HP at 40° and appears to be inclined to VP at 45°.
Solution

Problem 27 A hexagonal pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of the comers of the base such that the two base edges containing the comer on which it reete make equal incinnations with HP. Draw the projections of the pyramid when the axis of the pyramid is inclined to HP at 40° and to VP at 30°.

Solution

Problem 28 A square pyramid 35 mm sides of base and 60 mm axis length is suspended freely from a comer of its base. Draw the projections of the pyramid when the axis appears to be inclined to VP at 45°. Solution

Problem 29 Apentagonal pyramid 25 mm sides of base and 50 mm axis length is suspended freely from a comer o its base. Draw the projections of the pyramid when the axis appears to be inclined to VP at 45°.

Solution

Problem 30 A hexagonal pyramid 25 mm sides of base and 50 mm axis length is suspended freely from ecomer of its base. Draw the projections of the pyramid when the axis appears to be inclined to VP at 45°. Solution

Problem 31 Asquare pyramid 35 mm sides of base and 60 mm axis length rests on HP on one of its slant edges. Draw the projections of the pyramid when the axis appears to be inclined to VP at 45^{2}.

Solution

γ

Problem 32 A square pyramid 35 mm sides of base and 60 mm axis length rests on HP on one of its slant edges. Draw the projections of the pyramid when the axis is inclined to VP at 45°.

Solution

Problem 33 A square pyramid 35 mm sides of base and 60 mm axis length rests on HP on one of its slant triangular faces. Draw the projections of the pyramid when the axis appears to be inclined to VP at 45°.

Solution

Problem 34 A square pyramid 35 mm sides of base and 60 mm axis length rests on HP on one of its slant triangular faces. Draw the projections of the pyramid when the axis is inclined to VP at 45°.

Solution

Problem 35 A pentagonal pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of its slant edges. Draw the projections of the pyramid when the axis appears to be inclined to VP at 45°.

Solution

η

Problem 36 A pentagonal pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of its slant edges. Draw the projections of the pyramid when the axis is inclined to VP at 45°. Solution

Problem 37 A pentagonal pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of its slant triangular faces. Draw the projections of the pyramid when the axis appears to be inclined to VP at 45°. Solution

Problem 38 A pentagonal pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of its slant triangular faces. Draw the projections of the pyramid when the axis is inclined to VP at 45°.

Problem 39 A hexagonal pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of its slant edges. Draw the projections of the pyramid when the axis appears to be inclined to VP at 45°.

Solution

Problem 40 A hexagonal pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of its slant edges. Draw the projections of the pyramid when the axis is inclined to VP at 45°.

Solution

Problem 41 A hexagonal pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of its slant triangular faces. Draw the projections of the pyramid when the axis appears to be inclined to VP at 45°.

Solution

Problem 42 A hexagonal pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of its slant triangular faces. Draw the projections of the pyramid when the axis is inclined to VP at 45. Solution

Problem 43 A cube of 40 mm sides rests on HP on an edge which is inclined to VP at 30°. Draw the projections when the lateral square face containing the edge on which it rests makes an angle of 50° to HP .

Solution

Problem 44 A tetrahedron of 55 mm sides rests on one of its comers such that an edge containing that comer is inclined to HP at 50° and VP at 30°. Draw its projections. Solution

Problem 45 A cone of 50 mm base diameter and 60 mm axis length rests on HP on one of its generators. Draw its projections when the axis is inclined to VP at 30°.

Solution

Problem 46 A tetrahedron of sides 40 mm is resting on one of its sides on HP. This side is parallel to VP and 40 mm away from it. It is tilted about resting side such that the base containing this edge is inclined at 30° to HP. Draw the projections of the solid.

Solution

Problem 47 A Hexahedron of 30 mm sides is resting on one of its corners on HP such that one of its solid diagonals is perpendicular to VP. Draw the projections of the solid.
Solution

Problem 48 A pentagonal prism of base side 25 mm and height 50 mm is resting on HP on one of its base corners such that the top most edge is at a distance of 60 mm above HP. Draw its projections, when its top view of the axis is inclined at 45° to VP. Also, determine the inclination of the longer edge of the prism to HP which contains the resting corner.

Solution

Problem 49 A square pyramid of base sides 30 mm and height 60 mm is suspended by a thread tied to one of the egnners of its base. It is then tilted such that the axis makes an angle of 45° with respect to the VP. Considering the apex of the solid to be nearer to the observer, draw the projections of the solid.

selution

Problem 50 A cone of base dia. 40 mm and axis length 50 mm is resting on HP an a point on the circumferenge of ite base such that its apex is at 40 mm above the H^{P} and its top view of the axis is inclined at 60° to VF. Draw the top and frent views of the solid. Also, determine the inelinations of the axis when the base is nearer to the ebserver.

Solutipn

AHEWERS
$\theta=26^{\circ}$
-59°

ME 111: Engineering Drawing

Lecture \# 14 (10/10/2011)

Development of Surfaces

http://www.iitg.ernet.in/arindam.dey/me111.htm http://www.iitg.ernet.in/rkbc/me111.htm http://shilloi.iitg.ernet.in/~psr/

Indian Institute of Technology Guwahati
Guwahati - 781039

Development of surfaces

A development is the unfold/unrolled flat / plane figure of a 3-D object.

Called also a pattern, the plane may show the true size of each area of the object.

When the pattern is cut, it can be rolled or folded back into the original object.

Methods of development of surfaces are:
$>$ Parallel line development
> Radial line development
$>$ Triangulation development
> Approximate development
$>$ Parallel line development uses parallel lines to construct the expanded pattern of each three-dimensional shape. The method divides the surface into a series of parallel lines to determine the shape of a pattern. Example: Prism, Cylinder.

(B) Cylinder (Parallel line development)

(A) Prism
(Parallel line development)
$>$ Radial line development uses lines radiating from a central point to construct the expanded pattern of each three-dimensional shape. Example: Cone, Pyramid.

> Triangulation developments are made from polyhedrons, singlecurved surfaces, and wrapped surfaces. Example: Tetrahedron and other polyhedrons.

(F) Tetrahedron
(Triangulation development),
$>$ In approximate development, the shape obtained is only approximate. After joining, the part is stretched or distorted to obtain the final shape. Example: Sphere.

(E) Sphere
(Approximate development)

Examples of Developments

A true development is one in which no stretching or distortion of the surfaces occurs and every surface of the development is the same size and shape as the corresponding surface on the 3-D object.
e.g. polyhedrons and single curved surfaces

Polyhedrons are composed entirely of plane surfaces that can be flattened true size onto a plane in a connected sequence.

Single curved surfaces are composed of consecutive pairs of straight-line elements in the same plane.

An approximate development is one in which stretching or distortion occurs in the process of creating the development.

The resulting flat surfaces are not the same size and shape as the corresponding surfaces on the 3-D object.

Wrapped surfaces do not produce true developments, because pairs of consecutive straight-line elements do not form a plane.

Also double-curved surfaces, such as a sphere do not produce true developments, because they do not contain any straight lines.

1. Parallel-line developments are made from common solids that are composed of parallel lateral edges or elements.
e.g. Prisms and cylinders

The cylinder is positioned such that one element lies on the development plane.
The cylinder is then unrolled until it is flat on the development plane.

The base and top of the cylinder are circles, with a circumference equal to the length of the development.
All elements of the cylinder are parallel and are perpendicular to the base and the top.
When cylinders are developed, all elements are parallel and any perpendicular section appears as a stretch-out line that is perpendicular to the elements.

2. Radial-line development

Radial-line developments are made from figures such as cones and pyramids.
In the development, all the elements of the figure become radial lines that have
 the vertex as their origin.

The cone is positioned such that one element lies on the development plane.

The cone is then unrolled until it is flat on the development plane.
One end of all the elements is at the vertex of the cone. The other ends describe a curved line.

The base of the cone is a circle, with a circumference equal to the length of the curved line.

3. Triangulation developments:

Made from polyhedrons, singlecurved surfaces, and wrapped surfaces.

The development involve subdividing any ruled surface into a series of triangular areas.

If each side of every triangle is true length, any number of triangles can be connected into a flat plane to form a development

Triangulation for single curved surfaces increases in accuracy through the use of smaller and more numerous triangles.

Triangulation developments of wrapped surfaces produces only approximate of those surfaces.

4. Approximate developments

Approximate developments are used for double curved surfaces, such as spheres.

Approximate developments are constructed through the use of conical sections of the object.

The material of the object is then stretched through various machine applications to produce the development of the object.

Parallel-line developments

Developments of objects with parallel elements or parallel lateral edges begins by constructing a stretch-out line that is parallel to a right section of the object and is therefore, perpendicular to the elements or lateral edges.

In the front view, all lateral edges of the prism appear parallel to each other and are true length. The lateral edges are also true length in the development. The length, or the stretch-out, of the development is equal to the true distance around a right section of the object.

Step 1. To start the development, draw the stretch-out line in the front view, along the base of the prism and equal in length to the perimeter of the prism. Draw another line in the front view along the top of the prism and equal in length to the stretch-out line.
Draw vertical lines between the ends of the two lines, to create the rectangular pattern of the prism.

Step 2. Locate the fold line on the pattern by transferring distances along the stretch-out line in length to the sides of the prism, 1-2, 2-3, 3-4, 4-1.
Draw thin, dashed vertical lines from points 2, 3, and 4 to represent the fold lines.
Add the bottom and top surfaces of the prism to the development, taking measurements from the top view. Add the seam to one end of the development and the bottom and top.

Development of a truncated prism

Step 1: Draw the stretch-out line in the front view, along the base of the prism and equal in length to the perimeter of the prism.
Locate the fold lines on the pattern along the stretch-out line equal in length to the sides of the prism, 1-2, 2-3, 3-4, and 4-1.

Draw perpendicular construction lines at each of these points.
Project the points 1,2,3, and 4 from the front view
Step 2: Darken lines 1-2-3 and 4-1. Construct the bottom and top, as shown and add the seam to one end of the development and the top and bottom

Development of a right circular cylinder

Step 1. In the front view, draw the stretch-out line aligned with the base of the cylinder and equal in length to the circumference of the base circle.
At each end of this line, construct vertical lines equal in length to the height of the cylinder.
Step 2. Add the seam to the right end of the development, and add the bottom and top circles.

Development of a truncated right circular cylinder

The top circular view of the cylinder is divided into a number of equal parts, e.g 12.
The stretch-out line, equal in length to the circumference of the circle, is aligned with the base in the F.V. view and is divided into 12 equal parts from which vertical lines are constructed.
The intersection points in the T.V. are projected into the F.V., where the projected lines intersect the angled edge view of the truncated surface of the cylinder. These intersection points are in turn projected into the development.
The intersections between these projections and the vertical lines constructed from the stretch-out line are points along the curve representing the top line of the truncated cylinder.

Development of a truncated right circular cylinder

STEP 3

Development of a right circular cone

To begin this development, use a true-length element of the cone as the radius for an arc and as one side of the development.
A true- length element of a right circular cone is the limiting element of the cone in the front view. Draw an arc whose length is equal to the circumference of the base of the cone.
Draw another line from the end of the arc to the apex and draw the circular base to complete the development.

Step 1

$$
\theta=\frac{r}{1} \times 360^{\circ}
$$

Step 2

Question:

A cone of base diameter 40 mm and slant height 60 mm is kept on the ground on its base. An AIP inclined at 45° to the HP cuts the cone through the midpoint of the axis. Draw the development.
Solution Refer Fig. 16.10.

1. Draw FV and TV as shown. Locate the AIP.
2. Divide the TV into 12 equal parts and draw the corresponding lateral lines (i.e., generators) in FV. Mark points p1', p2', p3', ..., p12' at the points of intersections of the AIP with generators of the cone.
3. Obtain the included angle of the sector. $\theta=(20 / 60)^{*} 360=120^{\circ}$.
4. Draw $0-1$ parallel and equal to 0 ' -7 . Then draw sector $0-1-1-0$ with 0 as a centre and included angle 120°.
5. Divide the sector into 12 equal parts (i.e., 10° each). Draw lines $0-2,0-3$, O-4, ..., O-12.
6. Project points p1', p2', p3', ..., p12' from FV to corresponding lines in development and mark points P1, P2, P3, ..., P12 respectively. Join all these points by a smooth freehand curve.

Development of Transition pieces used in industry

Source: Internet

Triangulation development

Employed to obtain the development of Transition Pieces
Transition pieces are the sheet metal objects used for connecting pipes or openings either of different shapes of cross sections or of same cross sections but not arranged in identical positions.

1. Transition pieces joining a curved cross section to a non curved cross section (e,g, Square to round, hexagon to round, square to ellipse, etc.)
2. Joining two non-curved cross sections (e.g. square to hexagon, square to rectangle, square to square in unidentical positions)
3. Joining only two curve sections (e.g. Circle to oval, circle to an ellipse, etc)

In this method, the lateral surfaces of the transition pieces are divided in to a number of triangles.

By finding the true lengths of the sides of each triangle, the development is drawn by laying each one of the triangles in their true shapes adjoining each other.

Transition pieces joining curved to Non-curved cross sections

The lateral surface must be divided into curved and non-curved triangles. Divide the curved cross section into a number of equal parts equal to the number of sides of non-curved cross-section.

Division points on the curved cross section are obtained by drawing bisectors of each side of the non-curved cross section.

1st stage A

B

The division points thus obtained when connected to the ends of the respective sides of the non-curved cross-section produces plane triangles

In between two plane triangles there lies a curved triangle After dividing in to a number of triangles, the development is drawn by triangulation method.

The transition piece consists of 4 plane and 4 curved triangles $1 \mathrm{da}, 5 \mathrm{ab}, 9 \mathrm{bc}$, and 13 cd are plane triangles and $1 \mathrm{a} 5,5 \mathrm{~b} 9,9 \mathrm{c} 13$ and 13 d 1 are curved triangles.

Since the transition piece is symmetrical about the horizontal axis pq in the top view, the development is drawn only for one half of the transition piece. The front semicircle in the top view is divided into eight equal parts $\mathbf{1 , 2 , 3 , 4}$, etc. Connect points 1,2,3,4 and 5 to point a.

Project points $1,2,3$, etc to the front view to $1^{\prime}, 2^{\prime}, 3$ ', etc.

Connect 1', 2', 3' etc to a' and 5', $\mathbf{6}^{\prime}, 7^{\prime}, 8^{\prime} 9^{\prime}$ to b^{\prime}.

Draw vertical line XY. The first triangle to be drawn is 1pa

The true length of sides 1 p and 1 a are found from the true length diagram. To obtain true length of sides 1 p and 1a, step off the distances $1 p$ and 1 a on the horizontal drawn through X to get the point 1 P ' and 1A'. Connect these two points to Y. The length Y - $1 P^{\prime}$ and Y - $1 A^{\prime}$ ' are the true lengths of the sides $1 \mathbf{p}$ and 1a respectively.

DEVELOPMENT

Draw a line $\mathbf{1}_{1} \mathrm{P}=\mathrm{Y}-1 \mathrm{P}$.
Draw another line with center 1_{1} and radius Y-1A'. With P as center and radius pa, as measured from the top view, draw an are to cut the line 1_{1}-A to meet at A.

With A as center and radius equal to true length of the line 2a (i.e Y-2A'), draw an arc.

With 1_{1} as center and radius equal to 1-2 (T.V), draw another arc intersecting the pervious arc at $\mathbf{2}_{1}$.

Similarly determine the points $3_{1}, 4_{1}$ and 5_{1}.
A $-\mathbf{1}_{1}-\mathbf{2}_{1}-3_{1}-4_{1}-5_{1}$ is the development of the curved triangle 1-a-5.
$A B$ is the true length of the plain triangle a-5-b.
Similar procedure is repeated for the other three curved triangles and plain triangles.

Square to hexagon transition

The transition piece is assumed to cut along PQ.

Triangles 1pa and 1a2 and trapezium a23b are obtained.

$\frac{\text { TRUE LENGTH }}{\text { DIAGRAM }}$

To develop the lateral surface $\mathbf{a} 23 \mathrm{~b}$, it is divided into two triangles by connecting either $\mathbf{a 3}$ or $\mathbf{2 b}$ and completed by triangulation method.

True length diagram is drawn and development obtained by the previous method.

Transition pieces joining two curved surfaces

Draw TV and FV of conical reducing pieces

Divide the two circles into twelve equal parts. Connect point 1a, 2b, 3c, etc in the TV and 1'a', 2'b',etc in the FV. These lines are called radial lines

The radial lines divide the lateral surface into a number of equal quadrilaterals. Their diagonals are connected (dashed lines) forming a number of triangles. The true length diagram are drawn separately for radial and diagonal lines.

Conical reducing piece to connect two circular holes of diameters 80 mm and 50 mm . The holes are 90 mm apart and center offset by 15 mm .

True length diagram for radial lines

For the radial line 7-g'.
Draw XX`equal to vertical height (90 mm). With \(X\) as center and radius \(=7 \mathrm{~g}\) (from the top view), draw a horizontal offset line from \(X\) (in the true length diagram) to obtain point \(7_{1}`\) Join 7_{1} and X^{\prime}, which is the true length of radial line 7 g .

Similarly we can obtain true lengths for all the radial lines. For drawing convenience, the offset points are drawn on both sides of the line $\mathrm{XX}{ }^{-}$

Similarly true length diagram for the diagonal lines can be obtained.

Acknowledgement

- Main contributors of Engineering Drawing lecture slides preparation and modification as well as lab/tutorial questions preparation are:
- Prof. S.C. Mishra, IIT Guwahati
- Prof. C.V.R. Murty, IIT Kanpur
- Prof. P.S. Robi, IIT Guwahati
- Dr. Subhasis Dutta, IIT Guwahati
- Dr. Sujit Dash, IIT Guwahati
- This is to acknowledge that some slides are downloaded from internet.
- Thanks to Dr. Rajib Bhattacharjya and Dr. Arindam Dey for uploading the final lecture slides in internet.
- Thanks to all other colleagues and academic staff members, whose name I missed to mention in this page.

ME 111: Engineering Drawing

Date: 17/10/2011
 Lecture 15

Isometric Projections

Indian Institute of Technology Guwahati
Guwahati - 781039

Announcement

- Makeup lab class (Lab 12):
- Inform the respective Tutor one week before lab 12 or during lab 11, about the lab (only one) you want to perform as makeup class.
- Give Your Name, Roll No., Group No. and Lab details
- End semester examination:
- 19th Nov. 2011 (Saturday), and
- 20 ${ }^{\text {th }}$ Nov. 2011 (Sunday)

Axonometric projection - is a parallel projection technique used to create a pictorial drawing of an object by rotating the object on an axis relative to a projection or picture plane.

The differences between a multiview drawing and an axonometric drawing are that, in a multiview, only two dimensions of an object are visible in each view and more than one view is required to define the object; whereas, in an axonometric drawing, the object is rotated about an axis to display all three dimensions, and only one view is required.

Isometric View

Isometric axes can be positioned in a number of ways to create different views of the same object.

Figure \boldsymbol{A} is a regular isometric, in which the viewpoint is looking down on the top of the object.
In a regular isometric, the axes at 30° to the horizontal are drawn upward from the horizontal.

For the reversed axis isometric, the viewpoint is looking up on the bottom of the object, and the 30°

Figure A Regular Isometric

Figure C Long axis isometric

Figure B Reversed Axis isometric

Figure D Long axis isometric axes are drawn downward from the horizontal.

For the long axis isometric, the viewpoint is looking from the right or from the left of the object, and one axis is drawn at 60° to the horizontal.

ISOMETRIC PROJECTION and ISOMETRIC DRAWING

Isometric drawings are almost always preferred over isometric projection for engineering drawings, because they are easier to produce.

isometric projection 82% of ful scale

Full scale Isometric drawing

An isometric drawing is an axonometric pictorial drawing for which the angle between each axis equals 120° and the scale used is full scale.

Size comparison of Isometric Drawing and True Isometric Projection

Isometric Axonometric Projections

An isometric projection is a true representation of the isometric view of an object.

An isometric view of an object is created by rotating the object 45° about a vertical axis, then tilting the object (see figure - in this case, a cube) forward until the body diagonal (AB) appears as a point in the front view

(A) Orthographic views of a cube.

(B) Cube rotated 45° clockwise about axis.

(C) Axis rotated torward $35^{\circ} 16^{\prime}\left(35.27^{\circ}\right)$.

The angle the cube is tilted forward is $35^{\circ} 16^{\prime}$. The 3 axes that meet at A, B form equal angles of 120° and are called the isometric axes.
Each edge of the cube is parallel to one of the isometric axes.
Line parallel to one of the legs of the isometric axis is an isometric line.
Planes of the cube faces \& all planes parallel to them are isometric planes

The forward tilt of the cube causes the edges and planes of the cube to become shortened as it is projected onto the picture plane.

The lengths of the projected lines are equal to the cosine of $35^{\circ} 16^{\prime}$, or 0.81647 times the true length. In other words, the projected lengths are approximately 82% of the true lengths.

A drawing produced using a scale of 0.816 is called an isometric projection and is a true representation of the object.

However, if the drawing is produced using full scale, it is called an isometric drawing, which is the same proportion as an isometric projection, but is larger by a factor of 1.23 to 1 .

Isometric scale is produced by positioning a regular scale at 45° to the horizontal and projecting lines vertically to a 30° line.

Isometric scale $=($ Isometric length $/$ True length $)=\frac{\cos 45^{\circ}}{\cos 30^{\circ}}=\frac{1}{\sqrt{2}} \div \frac{\sqrt{3}}{2}=\frac{\sqrt{2}}{\sqrt{3}}=0.8165$
$=82 \%$ (approximately)

$$
\text { Isometric length }=0.82 * \text { True length }
$$

In an isometric drawing, true length distances can only be measured along isometric lines, that is, lines that run parallel to any of the isometric axes. Any line that does not run parallel to an isometric axis is called a non-isometric line.

Figure A is an isometric drawing of a cube. The three faces of the isometric cube are isometric planes, because they are parallel to the isometric surfaces formed by any two adjacent isometric axes.

Planes that are not parallel to any isometric plane are called non-isometric planes (Figure B)

Figure A: Isometric planes relative to isometric axes

Figure B: Non-isometric plane

Standards for Hidden Lines, Center Lines and Dimensions

In isometric drawings, hidden lines are omitted unless they are absolutely necessary to completely describe the object. Most isometric drawings will not have hidden lines.

To avoid using hidden lines, choose the most descriptive viewpoint.

However, if an isometric viewpoint cannot be found that clearly depicts all the major features, hidden lines may be used.

Centerlines are drawn only for showing symmetry or for dimensioning. Normally, centerlines are not shown, because many isometric drawings are used to communicate to nontechnical people and not for engineering purposes.

As per the Standards:

Dimension lines, extension lines, and lines being dimensioned shall lie in the same plane.

All dimensions and notes should be unidirectional, reading from the bottom of the drawing upward and should be located outside the view whenever possible. The texts is read from the bottom, using horizontal guidelines.

Square

Consider a square $A B C D$ with a 30 mm side shown in Fig. If the square lies in the vertical plane, it will appear as a rhombus with a 30 mm side in isometric view as shown in Fig. (a) or (b), depending on its orientation, i.e., right-hand vertical face or left-hand vertical face. If the square lies in the horizontal plane (like the top face of a cube), it will appear as in Fig.(c). The sides $A B$ and $A D$, both, are inclined to the horizontal reference line at 30°.

Taken from Dhananjay A Jolhe, Engg. Drawing, MGH

Rectangle

A rectangle appears as a parallelogram in isometric view. Three versions are possible depending on the orientation of the rectangle, i.e., right-hand vertical face, left-hand vertical face or horizontal face.

Taken from Dhananjay A Jolhe, Engg. Drawing, MGH

Triangle

A triangle of any type can be easily obtained in isometric view as explained below. First enclose the triangle in rectangle $A B C D$. Obtain parallelogram $A B C D$ for the rectangle as shown in Fig. (a) or (b) or (c). Then locate point 1 in the parallelogram such that $C-1$ in the parallelogram is equal to $C-1$ in the rectangle. $A-B-1$ represents the isometric view of the triangle.

(b)

Taken from Dhananjay A Jolhe, Engg. Drawing, MGH

Pentagon

Enclose the given pentagon in a rectangle and obtain the parallelogram as in Fig. 18.9(a) or (b) or (c). Locate points 1, 2, 3, 4 and 5 on the rectangle and mark them on the parallelogram. The distances $A-1, B-2$, $C-3, C-4$ and $D-5$ in isometric drawing are same as the corresponding distances on the pentagon enclosed in the rectangle.

Taken from Dhananjay A Jolhe, Engg. Drawing, MGH

Circle

The isometric view or isometric projection of a circle is an ellipse. It is obtained by using four-centre method explained below.

Four-Centre Method : First, enclose the given circle into a square $A B C D$. Draw rhombus $A B C D$ as an isometric view of the square. Join the farthest corners of the rhombus, i.e., A and C. Obtain midpoints 3 and 4 of sides $C D$ and $A D$ respectively. Locate points 1 and 2 at the intersection of $A C$ with $B-3$ and $B-4$ respectively. Now with 1 as a centre and radius $1-3$, draw a small arc 3-5. Draw another arc 4-6 with same radius but 2 as a centre. With B as a centre and radius $B-3$, draw an arc 3-4. Draw another arc $5-6$ with same radius but with D as a centre.

(a)
(b)

(c)

Taken from Dhananjay A Jolhe, Engg. Drawing, MGH

Any irregular Shape
Any irregular shape $1-2-3-4-5-6-7$ can be drawn in isometric view as follows: The figure is enclosed in a rectangle first. The parallelogram is obtained in isometric for the rectangle as shown. The isolines $B-2, D-2$, $C-3, E-3, G-4, F-4, H-5, H-6$ and $A-7$ has the same length as in original shape, e.g., $B-2$ in isometric $=B-2$ in irregular shape.

Irregular Shape

(b)
(c)

Taken from Dhananjay A Jolhe, Engg. Drawing, MGH

Isometric views for solids

The Boxing-in Method

The four basic steps for creating an isometric drawing are:
Determine the isometric viewpoint that clearly depicts the features of the object, then draw the isometric axes which will produce that view-point.
Construct isometric planes, using the overall width (W), height (H), and depth (D) of the object, such that the object will be totally enclosed in a box.
Locate details on the isometric planes.
Darken all visible lines, and eliminate hidden lines unless absolutely necessary to describe the object.

Sketch from an actual object

STEPS

1. Positioning object.
2. Select isometric axis.
3. Sketch enclosing box.
4. Add details.
5. Darken visible lines.

Note In isometric sketch/drawing), hidden lines are omitted unless they are absolutely necessary to completely describe the object.Sketch from an actual object

Step 4. Construct the right side
isometric plane using D and H
dimensions. Depth dimensions
are drawn along 30-degree
lines and height dimensions
are drawn as vertical lines.
Step 5 . Transfer some
distances for the various
features from the multiview
drawing to the isometric lines
that make up the isometric
rectangle. on the front and top
planes of the isometric box.

Non-Isometric Lines
Normally, non-isometric lines will be the edges of inclined
or oblique planes of an object as represented in a
multiview drawing.
It is not possible to measure the length or angle of an
inclined or oblique line in a multiview drawing and then use
that measurement to draw the line in an isometric drawing.
Instead, non-isometric lines must be drawn by locating the
two end points, then connecting the end points with a line.
τ
The process used is called offset measurement, which is
method of locating one point by projecting another point.

Step 1. Determine the
desired view of the
object, then draw the
isometric axes. For
this example, it is
determined that the
object will be viewed
from above, and the
axis shown in Figure
A is used.

\succ

$$
\begin{aligned}
& \text { Step 6. Along these } \\
& \text { isometric construction } \\
& \text { lines, mark off the } \\
& \text { distance } \mathbf{B} \text {, thus } \\
& \text { locating points } 0 \text { and } \mathbf{P} \text {. } \\
& \text { Connect points OP. } \\
& \text { Step 7. Connect points } \\
& \text { MO and NP to draw the } \\
& \text { non-isometric lines. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Determine dimensions } A \text { and } B \text { in the multi-view drawing. } \\
& \text { Construct an isometric box equal to the dimensions } W, H \text { and } D \\
& \text { as measured in the multi-view drawing. Locate dimensions } A \\
& \text { and } B \text { along the base of the isometric box, then project them } \\
& \text { along the faces to the edge of the top face, using vertical lines.. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Project the points } \\
& \text { of intersection } \\
& \text { across the top } \\
& \text { face using } \\
& \text { isometric lines. } \\
& \text { Point } V \text { is located } \\
& \text { at the intersection } \\
& \text { of these last two } \\
& \text { projections. } \\
& \text { Locate the } \\
& \text { remaining points } \\
& \text { around the base } \\
& \text { and draw the } \\
& \text { figure. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Step 1: Determine the desired view of the object, then draw the } \\
& \text { isometric axes. For this example it is determined that the object will } \\
& \text { be viewed from above and the axis will be as shown in Fig. A. }
\end{aligned}
$$

F.V.

Step 6. Locate the
endpoints of the oblique
plane in the top plane by
locating distances \mathbf{A}, \mathbf{B}, \mathbf{C},
and \mathbf{C} along the lines
created for the stot in Step
5. Label the end-point of
line \mathbf{A} as 5 , line \mathbf{B} as 1 , line
C as 4, and lire \mathbf{D} as 7 .
Locate distance \mathbf{H} along the
vertical isometric line in the front plane of the isometric box and label the end point 6. Then locate distance I

and label the end point 8 .

U
©
©

Connect endpoints
endpoint $6-8$.
points $5-6$ and $7-8$.

Irregular Curves - Irregular curves are drawn in
isometric by constructing points along the curve in the
multi-view drawing, locating those points in the
isometric view, and then connecting the points using a
drawing instrument such as a French curve.
The multi-view drawing of the curve is divided into a
number of segments by creating a grid of lines and
reconstructing the grid in the isometric drawing.

[^0]

\[

$$
\begin{aligned}
& \text { Step 3. From points } \\
& \text { 2, 4, } 6,8,10, \text { and } 12 \text {, } \\
& \text { draw isometric lines } \\
& \text { on the top face } \\
& \text { parallel to the } \mathrm{D} \text { line. } \\
& \text { Then, measure the } \\
& \text { horizontal spacing } \\
& \text { between each of the } \\
& \text { grid lines in the top } \\
& \text { multi-view as shown } \\
& \text { for dimension B, and } \\
& \text { transfer those } \\
& \text { distances a along } \\
& \text { isometric lines. } \\
& \text { parallel to the } W \text { line. } \\
& \text { The intersections of } \\
& \text { the lines will locate } \\
& \text { points } 13 \text {-18. }
\end{aligned}
$$
\]

Combinations of solids
Isometric projection of sphere $\&$
hexagonal pyramid
1

Taken for K.R. Gopalakrishna, Engineering Graphics, Subash stores

[^0]: takes
 7
 0
 0
 0
 0
 0
 0
 0
 more
 $\stackrel{\circ}{\circ}$
 the
 view.
 The more segments chosen,
 to draw, but the curve
 represented in the isometric

