
Introduction to materials



Introduction to 

materials

Without Materials there is No 

Engineering



Types of 

Materials
• Materials can be divided into the 

following

categories

Crystalline

Amorphous



Crystalline Materials

• These are materials containing one or many

crystals. In each crystal, atoms or ions show

a long range periodic arrangement.

• All metals and alloys are 

crystalline  materials.

• These include iron, steel, copper, brass,  

bronze, aluminum, duralumin , uranium,  

thorium etc.



Amorphous Material

• The teim amorphous refers to materials that  

do not have regular, periodic arrangement  

of atoms

• Glass is an amorphous material



Another Classification 

of  Materials

Another useful classification of materials 

is

Metals  

Ceramic

s  

Polymers

Composites



• Metals
• Ferrous (Iron and Steel)

• Non-ferrous metals and alloys

• Ceramics
• Structural Ceramics (high-temperature toad bearing)

• Refractories (corrosion-resistant, insulating )

• Whitewares (e.g. porcelains)

• Glass

• Electrical Ceramics (capacitors, insulators, transducers, 

etc.)

• Chemically Bonded Ceramics (e.g. cement and concrete)



• Polymers
• Plastics

•EIastomers

• Composites

• Particulate composites (small oarticles embedded in a different material)

• Laminate composites (golf ctub shafts, tennis rackets, Damaskus 

swords)

• Fiber reinforced composites (e.g. fibergtass)



Engineering 

Materials



Properties of Materials

› An alternative to major classes, you may divide materials

into  classification according to important properties.

› One goal of materials engineering is to select materials with suitable  

properties  for a given application, so it’s a sensible approach.

Just as for classes of materials, there is some overlap among the  

properties, so the divisions are not always clearly defined



• Mechanical properties

• Electrical properties

• Dielectric properties

• Magnetic properties

• Optical properties

• Corrosion properties

• Biological properties



Mechanical 

properties
A. Elasticity and stiPness (recoverable stress vs. 

strain)

B. Ductility (non-recoverable stress vs. strain)

C. Strength

D. Hardness

E. BrittTeness

F. Toughness

E. Fatigue

F. Creep



Electrical 

propertiesA. Electrical conductivity and resistivity

Dielectric properties
A. Polarizability

B. Capacitance

C. Ferroelectric properties

D. Piezoelectric properties

E. Pyroelectric properties

Magnetic properties

A. Paramagnetic properties

B. Diamagnetic properties

C. Ferromagnetic properties



Optical 

propertiesA.Refractive index

B.Absorption, reflection, and 

transmission

C.Birefringence (double refraction)

Co<osion properties  

Biological 

properties

A. Toxicity

B. bio-compatibility



Mechanical 

propeties
• Elasticity and stiffness (recoverable stress 

vs.  strain)

• Ductility (non-recoverable stress vs. strain)

• Strength

• Hardness

• Brittleness

• Toughness

• Fatigue

• Creep



Elasticity and 

stillness
• Elastic deformation is the deformation produced in a material  

which is fully recovered when the stress  causing it is  removed.

• Stiffness is a qualitative measure  of the elastic 

deformation  produced in a material. A stiP material has a high 

modulus of  elasticity.

• Modulus of elasticity or Young’s modulus is the slop of the  

stress — strain curve during elastic deformation.



• Ductility is the ability of the material to  

stretch or bend permanently without  

breaking.

1
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Ductility



'

Ductility is a  
measure of the  
deformation at  
fracture

Defined by 
percent  
elongation or
percent reduction

“  in area

Ductility

Bdt

te

Strain



Strengt
h

• Yield strength is the stress that has to be  

exceeded so that the material begins to  

deform plastically.

• Tensile strength is the maximum stress

which a material can withstand without

breaking.



rdess

• Hardness is the resistance to penetration of

the surface of a material.



Brittlenessand Toughness

• The material is said to be brittle if it fails  

without any plastic deformation

• Toughness is defined as the 

energy  absorbed before fracture.



Tou
hness

Duct 
ile

Strai
n

Toughness = the abilityto absorb energy up to 
fracture
= the total area under the strain-stress

curve up  to fracture



Fati
ue

• Fatigue failure is the failure of material  

under fluctuating load.



Tensile stress +  

Compressive stress -





re
e

• Creep is the time dependent peimanent  

deformation under a constant load at high  

temperature.



•Casting

• Forging

• Stamping

• Layer-by-layer 

growth

(nanotechnology)

• Microscopy: Optical, 
transmission

electron, scanning tunneling

• X-ray, neutmn, e- diffraction

Spectroscopy

• Extrusion

• Calcinating

• Sintering

• Mechanical (e.g., s ess-

snain)
• Electrical

• Magnetic

• Optical

• Cmr‹nive

• Deterimative 

characteristics



Metal

s



Metal
s

• Metals can be classified as

Ferrous

• Ferrous material include iron and its alloys 
(steels  and cast irons)

Non-ferrous

• Non-ferrous materials include all other metals 
and  alloys except iron and its alloys.

• Non-ferrous materials include Cu, Al. Ni etc. 

and  their  alloys such  as  brass, bronze, 

duralumin etc.



Ferrous metals and alloys

• Steel

Steels are alloys of iron and carbon in which  

carbon content is less than 2%. Other  

alloying elements may be present in steels.

• Cast iron

Cast irons are alloys of iron and carbon in  which 

carbon content is more than 2%. Other  

alloying elements may be present in cast irons.



Stee
l

• Steels are alloys of iron and carbon in which

carbon content is less than 29o. Other alloying

elements may be present in steels.

• They may be classified as

Plain carbon steel  

Alloy steel



Plain Carbon 

SteelThese are alloys of iron containing only 

carbon up to 2%. Other alloying elements  

may be present in plain carbon steels as  

impurities.

They can be further classified as

1. Low carbon steel (< 0.3% C)

2. Medium carbon steel (0.3 0.5% 

C)

3. High carbon steel (> 0.5% C)



Alloy 

Steel
These are alloys of iron containing carbon up to 2%  

along with other alloying elements such as Cr,  
Mo, W etc. for specific properties.

They can be further divided on the basis of total

alloy content fOther than carbonJ present in

them as given below.

—Low alloy steel (Total alloy content < 2H)

—Medium alloy steel (Total alloy content 2 - 59a)

—High alloy steel (Total alloy content > 59)



Cast iron

• Cast irons are alloys of iron and carbon  

containing more than 2% carbon.

They  may also contain other alloying 

elements.

• They can be further divided as below

—White cast iron

—Grey cast iron

—Malleable cast iron

—S.G. iron



Cast 
iron

—White cast iron contains carbon in the form 
of  cementite (Fe C).

—Grey cast iron contains carbon in the form of 
graphite  flakes.

—Malleable cast iron is obtained by heat treating
white  cast iron and contains rounded clumps of 

graphite  formed from decomposition of 
cementite.

—S.G. iron contain carbon in the form of spheroidal  

graphite particles during solidification. It is 

also known  as nodular cast iron.



Non-ferrous Metals and 
Alloys

• Non-ferrous Metals and Alloys include all other
metals  and alloys except iron and its alloys.

• Non-ferrous Metals and Alloys include Cu, Al, Ni  
etc. and their alloys such as

— Brass (alloy of Cu-Zn)

— Bronze (alloy of Cu —Sn)

— Duralumin (alloy of Al-Cu ) etc.



Distinguishing features

• Atoms arranged in a regular repeating structure (crystalline)

• Relatively good strength

• Dense

• Malleable or ductile: high plasticity

• Resistant to fracture: tough

• Excellent conductors of electricity and heat

• Opaque to visible light

• Shiny appearance

• Thus, metals can be formed and machined easily, and are usually long-lasting materials.

• They do not react easily with other elements,

•One of the main drawbacks is that metals do react with chemicals in the environment,  

such as iron-oxide (corrosion).

• Many metals do not have high melting points, making them useless for many applications.



Applications

• Electrical wiring

• Structures: buildings, bridges, etc.

• Automobiles: body, cnassis, springs, engine btock, etc.

• Airplanes: engine components, fuselage, landing gear assembly, etc.

• Trains: raits, engine comDonents, body, wheels

• Machine tools: drill bits, hammers, screwdrivers, saw blades, etc.

• Magnets

• Catalysts

Examples

• Pure metal elements (Cu, Fe, Zn, Ag, etc.)

• Alloys (Cu-Sn=bronze, Cu-Zn=brass, Fe-C=steet, Pb-

Sn=sotder,)



Cerami

c



Types of 
Ceramic

• Structural Ceramics (high-temperature toad bearing)

• Refractory (corrosion-resistant, insulating )

• White wares (e.g. porcelains)

• Glass

• Electrical Ceramics {capacitors, insulators, transducers, etc.)

• Chemically Bonded Ceramics (e.g. cement and concrete)



Distinguishing features

• Except for glasses, atoms are regulaily arranged (crystalline)

• Composed of a mixture of metal and nonmetal atoms

• Lower density than most metals

• Stronger than metals

• Low resistance to fracture: low toughness or brittle

• Low ductility or malleability: low plasticity

• High melting point

• Poor conductors of electricity and heat

• Single crystals are transparent

• Where metals react readily with chemicals in the environment and have low application  

temperatures in many cases, ceramics do not suffer from these drawbacks.

• Ceramics have high-resistance to environment as they are essentially metals that have  

already reacted with the environment, e.g. Alumina (AI2O,) and Silica (SiO2, Quartz).

• Ceramics are heat resistant. Ceramics form both in crystalline and non-crystalline phases  

because they can be cooled rapildy from the molten state to form glassy materials.



Applications

• Electrical insulators

• Abrasives

• Thermal insulation and coatings

• Windows, television screens, optical fibers (glass)

• Corrosion resistant applications

• Electrical devices: capacitors, varistors, transducers, etc.

• Highways and roads (concrete)

• Biocompatible coatings (fusion to bone)

• Self-lubricating bearings

• Magnetic materials (audio/video tapes, hard disks, etc.)

• Optical wave guides

• Night-vision

Examples
• Simple oxides (SiO

2 At,O„ Fe,O
3 MgO)

• Mixed-metal oxides (SrTiO„ MgAt,O
4 YBa,Cu,O „ having 

vacancy defects.)

• Nitrides (Si, N
4 AtN, GaN, BN, and TiN, which are used for hard 

coatings.)



Polymer

s



Polymer

s
• Plastics

Thermoplastics (acrylic, nylon, polyethylene,

ABS,. . .

Thermosets (epoxies, Polymides, Phenolics, ...

• Elastomers (rubbers, silicones, polyurethanes, ...



Two main fypes of polymers are thermosets and the/zrioplastics.

• Thermoplastics are long-chain polymers that slide easily past one another when heated,  

hence, they tend to be easy to form, bend, and break.

• Thermosets are cross-linked polymers that form 3-D networks, hence are strong and rigid.



Distinguishing features

• Composed primarily of C and H (hydrocarbons)

• Low melting temperature.

• Some are crystals, many are not.

• Most are poor conductors of electricity and heat.

• Many have high plasticity.

• A few have good elasticity.

• Some are transparent, some are opaque

•Polymers are attractive because they are usually lightweight and inexpensive to make,  

and usually very easy to process, either in molds, as sheets, or as coatings.

• Most are very resistant to the environment.

• They are poor conductors of heat and electricity, and tend to be easy to bend, which  

makes them very useful as insulation for electrical wires.



Applications and Examples

• Adhesives and glues

• Containers

• Moldable products (computer casings, telephone handsets, disposable 

razors)

• Clothing and upholstery material (vinyls, polyesters, nylon)

• Water-resistant coatings (latex)

• Biodegradable products (com-starcn packing "peanuts’ )

• Liquid crystals

• Low-friction materials (tef ton)

• Synthetic oils and greases

• Gaskets and 0-rings (rubber)

• Soaps and surfactants



Composite
s



Composite

s
• group of materials foimed from mixtures  

of metals, ceramics and polymers in such a  

manner that unusual combinations of  

properties are obtained.

• Examples are

Fibreglass  

Cermets  

RCC



Composite
s

Types of Composites:

• Polymer matrix composites

• Metal matrix composites,

• Ceramic matrix composites



Distinguishing features

• Composed of two or more different materials (e.g., metal/ceramic, 

polymer/polymer, etc.)

• Properties depend on amount and distribution of each type of material.

• Collective properties more desirable than possible with any individual material.

Applications and Examples

• Sports equipment (golf club shafts, tennis rackets, bicycle frames)

• Aerospace materials

• Thermal insulation

• Concrete

• "Smart" materials (sensing and responding)

• Brake materials

Examples

• Fiberglass {glass fibers in a polymer)

• Space shuttle heat shields (interwoven ceramic fibers)

• Paints (ceramic particles in latex)

• Tank armor (ceramic particles in metal)



Can you correlate structure

and strength and ‹:IuctiIity

Strength versus Structure of 

Brass  and changes in 

microstructure

Callister: Figs. 21 c-d and 

22

Annealing T (F)

Annealing T 
(C)



Increasing temperature  

normally reduces the  

strength of a material.

Polymers are suitable only  

at low temperatures.

Some composites, special

aPoys, and ceramics, have  
excellent properties at 
high  temperatures

1.()(D

2.000

Tcmpcfatui••

(°C)

_
°*



1930s trainer

World War II
fighter

i ,‹ioi› z,‹j‹)o 3,OOt
1Skin operating temperature (°F)

Figure 1.13 Skin operating temperatures for  

aircraft have increased with the development  

of improved materials. (After M. Steinberg,  

Scientific American, October, 19g6.)



Strength-to-weight ratio

D Density is mass per unit volume of a  

material, usually expressed in units of 

g/cm  or lb/in.

Strength-to-weight ratio is the strength of 

a  material divided by its density; materials  

with a high strength-to-weight ratio are  

strong but lightweight.
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Factors affecting electrical 

resistance
Composition  

Mechanical 

deformation  

Temperature



Resistivity

10* Ohms-m

°-‹

j

,

Effect of 

temperature

’T(^C)



Electrical Conductivity

.
”- ”“ f

Silicon
j



St
re

ss

“
§
°

.

- 100

“

+

25 C

e.g., Stress, corrosive environments, embrittlement, incorrect  

structures from improper alloying or heat treatments,

USS Esso Manhattan 3/29/43  

Fractured at entrance  to NY

harbor
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• Understand the origin and relationship between  

processing, structure, properties, and 

performance.’

• Use the right material for the right job .

• Help recognize within your discipline the 
design  opportunities oPered by materials 
selection.

While nano
-, 

bfo 
-, smart- materials can make 

technological  revolution, conservation and re-use methods 
and policies can  have tremendous environmental and 
technological impacts!



Without the right material, a good engineering design is  

wasted. Need the right material for the right job!

• Materials properties then are responsible for 

helping  achieve engineering advances.

• Failures advance understanding and material’s design.

• Some examples to introduce topics we will learn.



• In 1949, the COMET aircraft was a newly designed, modern jet  

aircraft for passenger travel. It had bright cabins due to large, 

square  windows  at most seats. It was composed of light-weight 

aluminum.

• In early 19 0's, the planes began falling out of the sky.

These tragedies changed the way 

aide

that were used.

were designed and the 

materials

• The square windows were a “stress comcenfrafor” and the 

aluminum  alloys used were not ”strong' enough to 

withstand the stresses.

• Until them material selection for mechanical design was not 

really  considered in designs.



• A Concorde aircraft, one of the most reliable aircraft of our time, was  

taking oP from Paris Airport when it burst into flames and crashed

killing all on board.

• Amazingly, the pilot knowingly steered the plane toward a less  

populated point to avoid increased loss of life. Only three people on  

the ground were killed.

• Investigations determined that a jet that took-off ahead of Concorde  

had a fatigue-induced loss of a metallic component of the aircraft,  

which was left on runway. During take-off, the Concorde struck the  

component and catapulted it into the wing containing filled fuel 

tanks.  From video, the tragedy was caused from the spewing fuel 

catching  fire from nearby engine exhaust flames and damaging flight 

control.



• Alloying can lead to new  or enhanced properties,

e.g. Li,  Zr added to AI (advanced precipitation 

hardened 767  aircrañ skin).

• It can also be a problem, e.g. Ga is a ‹’asf diHuser 

at Al grain boundaries and make AI catastrophically 

brittle (no plastic behaviorvs. strain).

• Need to know T vs. composition phase diagrams for 

what  alloying does.

• Need to know T-T-T (temp - time -

transformation) diagrams to know treatment.

T.J. Anderson and I. Ansara, J. Ph ase Equilibria, 12(1), 64-72 (1991 ).



W y, fern Pallister and Rethwisch, Ed. 3 

Chapter 11

Impacting mechanical 

response  through:

Precipitates from alloying Al 

with  Li, Zr, Hf,...

Grain Boundaries





Unit – II

Chapter 4. DEFORMATION OF METALS

1. Introduction
No engineering material is perfectly rigid. When a material is

subjected to external load, it undergoes deformation. While undergoing

deformation, the particles of the material exert a resisting force. When

this resisting force equals applied load, the equilibrium condition exists

hence deformation stops. This internal resistance is called the stress.

1. Behaviour of material when subjected to load.

Fig.4.1 Behaviour of material when subjected to load

Consider a bar of uniform cross sectional area A and length l

subjected to an axial pull of P at the ends as shown in the fig.4.1.

Consider a section X–X normal to the longitudinal axis of the

bar. Due to the action of axial pull, the length of the bar is increased

from l to l + 6l and lateral dimension will decrease. In order to keep this

section in equilibrium, internal resistance are set up in the section. To

avoid separation of the bar at this section, the internal resistance must

be equal to the applied load. This internal resistance offered by the

section against the deformation is called stress.

4.3 Definition of load, stress and strain
Load

The system of external forces acting on a body or structure is 
known as load.

Stress
The stress or intensity of stress at a section may be defined as 

the  ratio of the internal resistance or load acting on the section to the cross

sectional area of that section.Internal resistance Load
P 

Stress, ƒ = = =
Area of cross section

Area A

Unit – II 4.1



The unit of stress is N/mm2. The latest S.I unit for stress is Pascal.

1 Pascal   =   1 Pa=   1 N/m2 =   1 × 10−6  N/mm2

1 Kilo Pascal = 1 KPa   = 1 × 103 N/m2  = 1 × 10−3 N/mm2

1 Mega Pascal   =   1 MPa   =   1 × 106  N/m2    =   1 N/mm2

1 Giga Pascal   =   1 GPa   =   1 × 109  N/m2    =   1 × 103  N/mm2

Strain

Strain may be defined as the ratio between the deformation  

produced in a body due to the applied load and the original dimension.

Strain, e  =
Change in dimension 

Original dimension

The strain is only the ratio between the two same quantities 

and  hence it has no unit.

4. Classification of force system
According to the applied load, the force system is classified as 
follows:

1) Tensile stress 2) Compressive stress 3) 
Shear stress

4) Bending stress 5) Torsional stress

1) Tensile stress

Fig.4.2 Tensile stress

When a load is such that it tends to pull apart the particles of

the material causing increase in length in the direction of application of

load, then the load is called tensile load. The resistance offered against

this increase in strain is called tensile

Tensile stress, ƒ =

length is called tensile  stress. The corresponding

strain.

Axial pull P 2
=

(N/mm )
A

Area of cross section

Tensile strain, e  = =
Increase in length

6lOriginal length l

Unit – II 4.2



2) Compressive stress

Fig.4.3 Compressive stress

When a load is such that it pushes the particles of the material

nearer causing decrease in length in the direction of application of load,

then the load is called compressive load. The resistance offered against

this decrease in length is called compressive stress and the

corresponding strain is called compressive strain.

Axial push P 2
Compressive stress, ƒ = = (N/mm )

Area of cross section
A

Compressive strain, e  = =
Decrease in length

6lOriginal length l

3) Shear stress
When a body is subjected to two equal and opposite forces

acting tangentially across the resisting section, the body tends to be

sheared off across the cross section. Such forces are called shear force.

The stress induced in the section due to the shear force is called shear

stress and the corresponding strain is called shear strain.

Total shear force P 2
Shear stress, q = = (N/mm )

Area of resisting section

A  Change  in  

dimension Original dimension
Shear strain, e  =

4) Bending stress

When a beam is loaded with some external forces, bending
moments
and shear forces are set up. The bending moment at a section tends to

bend or deflect the beam. Internal stresses are developed to resist the

bending. These stresses are called bending stresses.

5) Torsional stresses
When a machine member is subjected with two equal and

opposite couples acting in parallel planes, then the member is said to

be in torsion. The

stress induced by this torsion is called torsional stress.
Unit – II 4.3



4.5 Hooke’s law

Hooke’s law states that stress is directly proportional to strain  

within elastic limit.

Unit – II 4.4

i.e. stress ∝ strain (or)
Stress 

Strain
= A constant

For tensile and compressive stresses, the constant is known as

Young’s modulus or modulus of elasticity.

For shear stress, the constant is known as modulus of rigidity.

6. Young’s modulus or modulus of elasticity

The ratio of stress to strain in tension or compression is known

as Young’s modulus or modulus of elasticity. It may also be defined as the

slope of stress – strain curve in elastic region. It is denoted by ‘𝐸’ and

the unit is N/mm2.

Young’s modulus is the measure of stiffness of the material. A

member made of material with larger value of Young’s modulus is said

to have higher stiffness. The stiffer materials undergo smaller

deformation for a given load condition.

6. Working stress

The maximum stress to which the material of a member or

machine element is subjected in normal usage is called working stress.

It is also known

as allowable stress or design stress. To avoid permanent set, the working  

stress is kept less than the elastic limit.

6. Factor of safety and load factor
The ratio of ultimate stress to working stress is known as factor of 
safety.

Factor of safety =
Ultimate stress 

Working stress

The value of factor of safety varies from 3 in case of steel to as

high as 20 in case of timber subjected to suddenly applied load. The

value of factor safety depends on the following factors.

1) The reliability of the material

2) The accuracy with which the maximum load on the member is 
determined

3) The nature of loading

4) The effect of corrosion and wear

5) The effect of temperature

6) Possible manufacturing defects.



Load factor  =

Load factor: The ratio of ultimate load to working load is called  

load factor.

Ultimate load

Working load

4.9 Linear strain or longitudinal strain

Linear strain or longitudinal strain is defined as the ratio of the  

change in length to the original length.

Linear or longitudinal strain, e = =
Change in length 6l

Original length l

4.10 Deformation due to tensile or compressive force

Consider a bar subjected to an axial pull or push at the ends. 

Due to  this load, deformation occurs in the bar.

Let, P  = Load acting on the bar

l  = Length of the bar

A = Cross sectional area of the bar

ƒ = Stress induced in the bar

e  = Strain in the bar

6l  = Deformation of the bar and

E = Young’s modulus of the material of the bar

According to Hooke’s law,
Stress = E  
Strain

Stress, ƒ  = Load = P

-------------
(1)

Area

A
Change in length

Strain, e = = 6l
Original length l

Substituting the values of stress and strain in 
equation (1)

P
( A)

E = =P l
6l A 

6l  ( l )

6l = P l

A E
(or)

ƒ l
6l =

E
( ∵ P = ƒ  

A

Unit – II 4.5
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4.11 Bars of varying sections

Consider a bar having different cross sections for different

length as shown in the fig.4.5. Let this bar is subjected to an axial pull

or push at the

ends. It may be noted that each section in the bar is subjected to the

same axial push or pull. Due to this variations in cross sectional area,

the stresses, strain and hence change in length for each section are

different. These values

are calculated separately for each section as usual. The total changes in

length is equal to the sum of the changes of all the individual lengths of

the section.

Fig.4.4 Bars of varying sections

Let l1, l2, l3 and A1, A2, A3 be the length and area of the sections of  

1, 2, 3 respectively.

1

P l1
Change in length of section 1, 6l  = A1 E

2

3

P l2 P 
l3

Similarly, 6l  = ; 6l  =
A2 E A3 
E

Total deformation of the bar, 6l = 6 l1 + 6 l2 + 6 l3

P l1 P l2
P l3

= +
+

=  A1E
A2E
A3E

P

E (A1

A2

l1 + l2  + l3

A3)

If the modulus of elasticity is different for different sections, 
then

1     1 2     
2 3     
3

6l = P l1

+
l2

+   l3  (A E

A E

A E )

4.12 Shear stress and shear strain

When a body is subjected to two equal and  opposite forces 

acting  tangentially across the resisting section, the body tends to be 

sheared off

across the cross section. Such forces are called shear force. The stress  

induced in the section due to the shear force is called shear stress and 

the

Unit – II 4.6



corresponding strain is called shear strain. In shear, the strain is

measured by the angle in radians through which the body is distorted

by the applied force.

Consider a cube ABCD of side l fixed at the bottom face DC. Let

a tangential force P be applied at the face AB. As a result of this force,

the cube is distorted from ABCD to A’B’CD through an angle ɸ as

shown in fig.4.6.

Fig.4.5 A body subjected to shear force

Shear strain 
=

Change in length

Original length
=

DAr − DA
AA

′
DA

l

= = 
siнɸ = ɸ

( ‡ For small angle, sin ɸ = 
ɸ)

Modulus of rigidity, C =

4.13. Modulus of rigidity or shear modulus

The ratio of shear stress to shear strain within the elastic limit 

is  known a modulus of rigidity or shear modulus. It is denoted by N or G 

or C

and the unit is N/mm2. Larger is the modulus of rigidity, lesser is the

distortion when a body is subjected to shear stress.

Shear stress
Shear strain

14. Lateral strain

It is the ratio of the change in lateral dimension to the original  

dimension. Lateral strain is induced along the direction perpendicular to 

the

direction of application of load.

14. Poisson’s ratio
The ratio of the lateral strain to the corresponding longitudinal 

strain  within elastic limit is called Poisson’s ratio. It is represented by n 
(nu) or 1/m.

Poisson’s ratio   =
=

1
Latera

l strain
m

Longitudi
nal strain

For most of the material, Poisson’s ratio lies between 0.25 to 0.33.

Unit – II 4.7



4.16 Volumetric strain

When a body is subjected to an axial pull or push, it undergoes  

change in its dimensions and hence its volume will also change.

The ratio of change in volume to the  original volume is known 
as

volumetric strain.Volumetric strain, ev  = =
Change in volume

6Y Original volume Y

4.17 Bulk modulus
When a body is subjected to three mutually perpendicular

stresses
of same magnitude, the ratio of the direct stress to the corresponding

volumetric strain is known as bulk modulus or bulk modulus of elasticity.

It represents the resistance of a body against volumetric strain. It is

usually denoted by 𝐾.
Bulk modulus, K = =

Direct 
stress

p 
Volumetric strain

ev
4.18 Volumetric strain of various sections

1) Rectangular bar

Fig.4.6 Volumetric strain in rectangular bar

Consider a rectangular bar of length l, width b and thickness  t and 

is  subjected to an axial tensile force P as shown in fig.4.7.

Let 6l, 6b, 6t be the changes in dimensions due to the applied 
load.

Original volume,   Y1  = b × t × lFinal 
volume,

Y2 = (b + 6b)(t + 6t)(l + 6l)

= (b + 6b)(tl + t6l + l6t + 6l 6t)

= (b t l + b t 6l + b l 6t + b 6l 6t + t l 6b + t 6l 6b + l 6t 6b + 6b 6l 6t)

Neglecting the higher powers of δl, δb and δt,

Final volume, Y2 = b t l + b t 6l + b l 6t + t l 6b

Change in volume, 6Y = Final volume – Original volume

= b t l + b t 6l + b l 6t + t l 6b − b t l

= 𝑏 𝑡 ð𝑙 + 𝑏 𝑙 ð𝑡 + 𝑡 𝑙 ð𝑏

Unit – II 4.8



Volumetric strain =
Change in 

volume 

Original volume
Y

6Y = b t 6l + b l 6t + t l 6b = 6l + 6t + 6b
b t l l

t

b
6l

But, = Longitudinal 
strain = e  l

ðt = Lateral strain = − 1 e (∵ Thickness 
decreases)  t m

ðb = Lateral strain = − 1 e (∵ Width 
decreases)  b m

Volumetric strain = e − 1 e − 1 e = e − 2e

m m m

ðV = e (1 − 2 )V m

Change in volume, 2
6Y  = e (1 − m) Y

2) Circular bar

Fig.4.7 Volumetric strain in circular bar

Consider a circular bar of diameter d and length l and is 

subjected  to a tensile force of P as shown in fig.4.8.

Let 6d and 6l be the change in dimension due to the applied 
load.

Original volume, 
Y

1 = v d2l  
4

Final volume, 
Y

2 4
= v [(d + 6d)2 × (l + 6l)]

Unit – II 4.9



4
= v [(d2 + 2d6d + 6d2

) × (l + 6l)]

v 2 2 2
2

= (d l + d 6l + 2 d l 6d + 2 d 6l 6d + l 6d  + 6d  6l  
4

Neglecting the higher powers of δd and δl

2 4
Y  = v (d2l + d26l + 2 d l 6d)

<

Change in volume, δV  = Final volume – Original volume

= v (d2l + d26l + 2 d l 6d) − v d2l  4
4

= v (d26l + 2 d l 6d)

Volumetric strain, ev  = =

4

6Y Change 
in volumeY

Origin
al volume= 4

v
(d26l + 2 d l 6d)

v 
4

d2l
=

+

d26l

2 d l 6d
d2l

d2l= 6l + 2 6d

l

d
But, 6l = Longitudinal strain = e

l

ðd = Lateral strain = − 1 e (∵ Diameter 
decreases)  d m

Volumetric strain, ðV = e + 2 (− 1 e) = e (1 − 2 )
V m m

2Change in volume,   6Y  = e (1 − m) Y

4.19 Relation between Young’s modulus (E) and modulus of rigidity (N)

Fig.4.8 Relation between E and C

Unit – II 4.10



Consider a square element ABCD of side ‘a’ and unit thickness.

Let the element is distorted to ABC’D’ due to shear stress ‘q’ acting as

shown in the fig.4.9. Due to the shear stress, the diagonal AC will be

elongated and the diagonal BD will be shortened.

E

q q
Linear strain of diagonal AC, = − 1  −

m (    E)

E(

m)

q
Linear strain of diagonal AC, = 1 + 1 − − − − −

(1)
Let this shear stress q cause shear strain ɸ resulting in the 
diagonal

AC to distort to AC’.
Strain along diagonal AC =

Change in 

length 

Original length
=

ACr − AC

AC
=

ACr − AP
(∵ AC  = AP )

=

AC

P Cr

AC
– − − − − (2)

f

From triangle CC’P , P Cr  = CCr sin 
450  = CC

√2 (∵ AD = CD)

√2 √2 CD

AC = √AD2 + CD2 = √2 CD2 = √2 CD

Substitute the values of PC’ and AC in equation (2)

Linear strain of  diagonal AC = CC′ = CC′ = 1 
CC′ 2 CD

2 CD
From triangle CC’B,  tan ɸ = CC′ = CC′ (∵ BC = CD)

BC CD

Since the angel is very small, tan φ = φ

∴ ɸ = CC′

CD
q

= CC′
C

CD (

q
∵ Shear strain, ɸ = C )

– − − − − (3)∴ Linear strain of diagonal AC, = 1 q

2 C
Combining equation (1) and (3)

q 1 +  1
E (

m)

= 1 q

2 C
1

E 
(1 +  ) =

m

2 C 1
E = 2C (1 + m)

Unit – II 4.11



4.20 Relation between bulk modulus (K) and Young’s modulus (E)

Fig.4.9 Relation between K and E

Consider a cube subjected to three mutually perpendicular 

tensile  stresses of equal intensity as shown in fig.4.10.

Let, ƒ be the stress acting on each face of the cube.

The strain in x direction, 

e
z

E

m ( E

ƒ
z

ƒ
yƒ
7= − 1

+E )

z E (

m)

z

y

7

ƒ
e   = 1 −  2    (∵ ƒ   = ƒ   = ƒ   = 
ƒ)

Similarly, e
y    

= ƒ    1 −  2
E (

m)

and e
z 
= 

= 
ƒ

1 −  2
E (

m)
Y

Volumetric strain, 6Y
= e z

y

7

ƒ
+ e   + e   = 3 × 1 −  2

E (

m)Bulk modulus, K =
Direct 
stressVolumetric 

strain

‡ Volumetric strain   
=

Direct 
stress

ƒ
=Bulk modulus K

E (

m)

ƒ ƒ
3 × 1 −  2

=

⟹  K

3
1 −  2

E [

m]

= 1

K

2
E = 3K (1 − m)

Unit – II 4.12



4.21 Relation between E, C  and K

m

1We know that, E = 2C (1 +  ) ------------(1)

m

2Also,  E = 3K (1 −  ) ------------(2)

Equating (1) and 
(2) 1 2

2C (1 +  ) = 3K (1 −  )m m

2C + 2C = 3K − 6K
m

m

6K + 2C = 3K − 2C
m m

1 (6K + 2C) = 3K − 2C
m

1 = 3K − 2C 

m

6K + 2C

Substituting the value of   1 in equation 
(1)

m
6K + 2C

Unit – II 4.13

3K − 2C
E = 2C (1 + )

6K + 2C

6K + 2C + 3K − 2C
= 2C ( )

9K
= 2C ( )

2

3K + CE = 9KC 

3K + C

4.22 Composite bars

A composite bar may be defined as a bar made of two or more  

different materials joined together in such a way that the system elongates 

or

contracts as a whole equally when subjected to axial pull or push.

Consider a composite bar made of two different materials as 

shown  in the fig.4.11



Fig.4.10 Composite bar

Let, P   = Total load on the bar

l   = Length of the bar

A1 = Area of bar 1

E1 = Young’s modulus of bar 1

P1   = Load shared by bar 1 and

A2, E2, P2 are corresponding values for bar 2

According to the definition of composite bar,

THE STRAIN IN BOTH THE MATERIAL IS SAME.

i.e.  ƒ1 
= 

ƒ2

E1

E2

E2

E1
ƒ =

× ƒ

1

2The ratio E1  is known as modular ratio
E2

Total load, P = Load shared by bar 1 + Load shared by bar 
2

P = P1 + P2

= ƒ1A1 + ƒ2A2

E2

E1
= ƒ 
A + ƒ A

2     1

2     2E1 ƒ2 A1 + E2 ƒ2A2
= E2

Unit – II 4.14



ƒ2 (E1A1 + E2A2)
P = E2

2ƒ = P
E2

(E1A1 + E2A2
)

E2 A2
P2 = ƒ2A2 = P (E A + E A )

1   1

2   2

E1 A1
P1 = ƒ1A1 = P (E A + E A )

1   1

2   2

Similarly,

Note: The following points should be remembered while solving the  

problems in composite bars

1) Extension or contraction of the bar being equal and hence the  

strain is also equal

2) The total external load applied on the composite bar is equal to 

the  sum of the loads shared by the different materials.

23. Temperature stresses and strains.

When the temperature of a body is increased, it undergoes

deformation leading to increase in dimensions. On the other hand the

body

contracts when its temperature is reduced.

When a body is allowed to deform freely under increased or

reduced temperature condition, stresses are not induced. If the

deformation is prevented completely or partially, stresses will be

induced in the body.

The stresses induced in a body due to change in temperature

are known as temperature stress or thermal stress. The corresponding

strain in the body is known as temperature strain or thermal strain.

23. Expression for temperature stress and temperature strain

Fig. 4.11 Temperature stress and strain

Unit – II 4.15



Consider a body subjected to an increase in 

temperature.  Let, l = Original length of the body

T = Increase in temperature and

a = Co efficient of linear expansion

Increase in length due to increase of temperature, 6l  = a Tl

If both the ends of the bar are rigidly fixed so that its expansion is  

prevented, then compressive stress is induced in the body.

Change in length
Strain, e = = aTl = aT

Original length l

Stress, ƒ = Strain × Young's modulus = aTE

If the supports yield by an amount equal to λ, then

the actual expansion that has taken place, 6l  = aTl − S

Change in length
Strain, e = = aTl − S = aT − SOriginal length l l

SStress, ƒ  = Strain × Young's  modulus =   (
aT  −

) 
E

l

4.25 Strain energy or resilience due to axial load
When a body is subjected to an external load, there is

deformation
of the body which causes movement of the applied load. Thus work is

done by the applied load. This work done is stored in the body as

energy and that is why when the load is removed, the body regains its

original shape and size behaving like a spring. This energy stored in the

body by virtue of strain is called strain energy or resilience.

Analytical derivation of strain energy

Consider a body of length l and uniform cross section A and is

subjected to an external load P . The deformation takes place from zero

to final value of the magnitude, if the load is increased gradually.

Consider an elemental strip of thickness dδ and at a distance δ1

from the origin. The work done by the external load P for the

displacement of d6 is given by,

6w = Load × Displacement = P . d6 ------------- (1)

Unit – II 4.16



AE

l
Total work done = J

6. d6 =

AE

l

62

Fig.4.12 Strain energy

We know that, deformation, 6 = Pl 

A E

P = A E 6

l

Substitute the value of P in equation 

(1)

6w = A E 6 . d6
l

6
[ 2 ]

00

Substituting 6 = 
ƒl

E

6

=
AE

l

62

[ 2 ]

ƒl 2

Total work done = AE (E) 

l

2
⎣

AE

l
=

[2E
2 ]

⎦
ƒ 2l2

ƒ 2
ƒ 2

2E

2E

= × Al =
× Volume

∴  The strain energy 
stored,

But total work done on the bar = Strain energy stored in the 
bar

ƒ 2
U = ×
Volume

2E

Unit – II 4.17



4.26 Proof resilience

The maximum strain energy which can be stored in a body 

without  permanent deformation is called its proof resilience. If pmax be 

the maximum

stress at the elastic limit, thenProof resilience =

ƒ 2 az
m

2E
× Volume

4.27 Modulus of resilience

The maximum strain energy which can be stored in a body per 

unit  volume is known as modulus of resilience.

Modulus of resilience =

ƒ 2 az
m

2E

The strain energy stored in the bar , 
U

4.28 Instantaneous stresses due to various types of loads

1. Gradually applied load

Consider a bar subjected to a gradually applied load.

Let, P  = Gradually applied load,

A =  Cross sectional area of the bar,

l  = Length of the bar,

6l  = Deformation of the bar

E = Young’s modulus of the material of the bar and

ƒ = Instantaneous stress induced in the bar

Since the load is applied gradually, the magnitude of he load is  

increasing from zero to the final value P .

Average load = Minimum load + Maximum load = 0 + P = P

2 2 2

Work done by the load = Average load × Deflection

= P × 6l  
2

ƒ 2

=

× A l  2 E
But strain energy stored = Work 
done ƒ 2

2 E

P

2
× A l =

× 6lWe know that, 6l = 
ƒl

E

Unit – II 4.18



ƒ 2 P
∴ ×
A l = ×2 E 2

E

ƒl

ƒ × A = P

ƒ = P

A

Instantaneous stress produced due to gradually applied 
load,

ƒ = P

A

The strain energy stored in the bar , 
U

2. Suddenly applied load
Consider a bar subjected to a suddenly applied load.

Let, P  = Suddenly applied load,

A =  Cross sectional area of the bar,

l  = Length of the bar,

6l  = Deformation of the bar

E = Young’s modulus of the material of the bar and

ƒ = Instantaneous stress induced in the bar

Since the load is applied suddenly, it is constant throughout the  

process of deformation of the bar.

Work done by the load = Average load × Deflection = P × 6l

ƒ 2
=

× A l  2 E
But strain energy stored = Work 
done ƒ 2

2 E
× A l = P × 6l

We know that, δl 6l = 
ƒl

E

ƒ 2
∴ ×

A l = P × 2 E

ƒl  

E
ƒ  

2
× A = P

ƒ  = 2 × P

A

Unit – II 4.19

Instantaneous stress produced due to suddenly applied 
load,

ƒ  = 2 × P

A

3. Impact by gravity

Consider a bar in which a collar is attached at the bottom. Let 

this  bar is subjected to a load applied with impact as shown in the 

fig.4.14.



The strain energy stored in the bar , 
U

Fig.4.13 Impact by gravity

Let, P  = Load applied with impact

A =  Cross sectional area of the bar,

l  = Length of the bar,

6l  = Deformation of the bar due to the load

E = Young’s modulus of the material of the bar and

ƒ = Instantaneous stress induced in the bar

h  = Height of fall of load before it strikes the collar

Work done by the load = Average load × Distance moved

= P (h + 6l)

ƒ 2
=

× A l  2 E
But strain energy stored = Work 

done

ƒ 22 E
× A l = P (h + 6l)

We know that, 6l = 
ƒl

E
ƒ 2 ƒl

ƒ 2 ƒl

∴ × A l = P 
(h +

)  2 E

E

× A l = Ph + P (  )  2 E
EMultiply by 2E on both sides,

Al

ƒ 2  × Al

2 E

Pƒl2E 2E
2E

× = (Ph × ) + ( × )
Al Al E

Al
Unit – II 4.20



ƒ 2  = 2EPh + 2ƒ  
Al

P 
(A)

ƒ 2  − 2ƒ (A)
P

= 2EPh
Al

P 2Add on 
both sides

A2

2 P P 2
ƒ − 2ƒ (A) + A2 =

2EPh

Al

P 2+
A2

P 2 P 2

(ƒ − A) = A2 +
2EPh

Al

Taking square root on both sides, we 
get,

ƒ − P =  
A

{(
A2

P 2  
+ 2EPh

Al )

{(
A2

P 2  
+ 2EPhƒ = P +

A Al )

6l is very small as compared to h, 

then  Work done = P h

But strain energy stored = Work done

ƒ 2

2 E
× A l = Ph

ƒ 2  = 2EPh

A l

ƒ =

2EPh
{ A l

1

Unit – II 4.21

2

4) Impact by shock

Consider a body subjected to a shock 

load  Let, A = Cross sectional area of the bar,

l  = Length of the bar,

6l  = Deformation of the bar due to the load

E = Young’s modulus of the material of the bar and

ƒ = Instantaneous stress induced in the bar

The strain energy is stored in the bar as kinetic energy.

∴ Shock energy =  mv
2

Where, m  = Mass of the body, v  = Velocity of the body



But strain energy stored = Shock 
energy

ƒ 2

2E

1
× Al =  mv

2

2

By using the above equation, we can find out the instantaneous  

stress induced in the bar due to shock load.

Unit – II 4.22



Example : 4.1 (Oct.92, Oct.95, Apr.13, Apr.15)

A circular bar of 20mm diameter and 300mm long carries a tensile
load of 30KN. Find the stress, strain and elongation of the bar. Take E =
2 × 105N/mm2.

Given : Diameter of the bar, d = 20 mm
Tensile load, P   =   30 KN = 30 × 103 N  

Length, l = 300 mm
Young’s modulus, E = 2 × 105 N/mm2

2) Strain, e 3) 
Elongaltion, ðl

4

4

To find :   1) Stress, ƒ

Solution :

Area, A = л × d2  = л × 202  = 314.159 mm2

Load

30 × 103

Stress, ƒ  = =

=  Area

314.159

95.493 
N/mm2

Strain, e = Stress = 
ƒ 

= 
95.493 =  

Young's Modulus

E 2 × 105

4. 774 × 10−4

Elongation, ðl = e × l = 4.774 × 10−4 × 300 = 0.143 mm

Result :   1) Stress, ƒ  = 95. 493 N/mm2     2) Strain, e = 4. 774 × 10−4

3) Elongation, 6l = 0.143 mm

Example : 4.2 (Apr.14)

A mild steel rod of 25mm diameter and 200mm long is
subjected to an axial pull of 75KN. If E = 2. 1 × 105N/mm2, determine
the elongation of the bar.

4

4

Given : Diameter of the rod, d = 25 mm
Length, l  = 200 mm
Load , P   =   75 KN = 75 × 103  N

Young’s modulus, E = 2.1 × 105 N/mm2

To find :   1) Elongation, ðl

Solution :

Area, A = л × d2  = л × 252  = 490.873 mm2

P  l 75 ×
103  × 200

Elongation, ðl = = =A E 490.873 ×
2.1 × 105

0. 1455 mm

Result : 1) Elongation, 6l  = 0.1455 mm

SOLVED PROBLEMS

STRESS, STRAIN, ELONGATION AND YOUNG’S MODULUS

Unit – II P4.1



Example : 4.3 (Apr.02)

A rectangular wooden column of length 3m and size 300 × 200mm
carries an axial load of 300KN. The column is found to be shortened by
1.5mm under the load. Find the stress and strain.

,

Given : Length of the column, l  = 3 m = 3000 mm
Width, b = 300 mm  
Depth, d = 200 mm

Change in length, ðl = 1.5 mm
Load , P   =   300 KN = 300 × 103   N

To find : 1) Stress, ƒ 2) Strain, e

Solution :

Area, A = b × d  = 300 × 200 = 60000 mm2

Stress , ƒ  = Load P

300 × 103
Area A

60
000

= =
=

5 N/mm2

Strain, e = Change in length = 
ðl

= 
1.5

=  
Original length l

3000

0. 0005

Result :  1) Stress, ƒ = 5 N/mm2 2) Strain, e = 0.0005

Example : 4.4 (Oct.93, Oct.14)

A brass tube of 50mm outside diameter and 45mm inside
diameter and 300mm long is compressed between end washers with a
load of 24.5KN. Reduction in length is 0.15mm. Determine the value of
E.
Given : External diameter, d1 = 50 

mm  Internal diameter, d2 = 

45 mm

Length, l  = 300 mm

Load , P   = 24.5 KN = 24.5 × 103 N

Change in length, ðl = 0.15 mm

To find : 1) Young’s modulus, E

Solution : л
4

Area, A =

×

( 1

2

2

2

)
л
4

d

− d

=

×

(
2

2

)50 − 45 = 
373.064 mm

2

We know that, ðl =  P  l
AE

∴ E  =

=

P l 24.5 ×
103 × 300A ðl

373.0
64 × 0.15

=

Unit – II P4.2

1. 3135 × 105  

N/mm2

Result : 1) Young’s modulus, E = 1. 3135 × 105 

N/mm2



Example : 4.5 (Apr.88)

A rod of hydraulic lift is 1.2m long and 32mm in diameter. It is
attached to a plunger of 100mm in diameter working under a pressure
of 8 N/mm2. If E = 2 × 105N/mm2, find the change in length of the rod.

Given : Length of the rod, l = 1.2 m = 1200 mm  
Diameter of the rod, d = 32 mm

4

4

Diameter of the plunger, D = 100 mm  
Pressure on the plunger, p = 
8N/mm2

Young’s modulus, E   =   2 × 105N/mm2

To find : 1) Change in length, ðl

Solution :

Area of the plunger = л × D2 = л × 1002 = 7853.982 mm2

4

4

Area of the rod, A = л × d2  = л × 322  = 804.248 mm2

Load on the rod, P = Force on the plunger

= Pressure × Area of the 

plunger

= 8 × 7853.982 = 62831.856 NChange in length, ðl =  P  l = 62831.856 × 1200

= AE 804.248 × 0.2 ×
106

0. 469 mm

Result :  1) Change in length of the rod, 6l  = 0.469 mm

WORKING STRESS, FACTOR OF SAFETY

Example : 4.6 (Oct.92, Oct.94, Apr.01, Oct.02, Oct.03, Apr.05)

A cement concrete cube of 150mm size crushes at a load of  
337.5KN. Determine the working stress, if the factor of safety is 3.

Given : Side of the cube, s  = 150 mm

Crush load, P  = 337.5 KN = 337.7 × 103 N

Factor of safety = 3

To find : 1) Working stress, ƒr

Solution :

Area,  A = s2  = 150 × 150 = 22500 mm2

Ultimate stress, ƒu =
Crush load P

337.5 × 103  

Area
2250
0

= =
= 15 N/mm  

A

Unit – II P4.3

2

Factor of safety = Ultimate stress

Working 
stress



Working stress, ƒ

Unit – II P4.4

r
= Ultimate stress = 15 =  

Factor of safety

3

5 N/mm2

Result : The working stress, ƒw = 5 N/mm2

Example : 4.7 (Aor.95)

A hollow cast iron column 250mm diameter with a wall
thickness of 25mm is subjected to an axial load. If the ultimate crushing
stress for the material is 480 N/mm2, calculate the safe load for the
column using a factor of safety of 3.

Given : External diameter, d1 = 250 mm  

Wall thickness, t = 25 mm

Ultimate stress, ƒu  = 480 N/mm2

Factor of safety = 3

To find : 1) Load, P

Solution :

Internal diameter,  d2  = d1  − 2t = 250 − (2 × 25) = 200 
mmArea,  A =

×
4

( 1

2

л 2

2

л
4

d

− d

=

×

)

(

)250 − 200 = 17671.459 
mm

2 2
2

Working stress, ƒr

Also, working stress,  
ƒ

r

= Ultimate stress = 480 = 160 N/mm2

Factor of safety 3

= Load = P

Area

A
Load, P  = Working stress ×
Area = 160 × 17671.4590 = 2827433.44 N

Result :  1) Load, P  = 2827433.44 N

Example : 4.8 (Apr.96)

The ultimate stress for a hollow steel column which carries an
axial load of 2000KN is 480N/mm2. If the external diameter of the
column is 200mm, determine the internal diameter. Take factor of
safety as 4.
Given : Ultimate stress, ƒu  = 480 N/mm

2

Load, P   =   2000 KN = 2000 × 103  N
External diameter, d1 = 200 mm  

Factor of safety = 4

To find : 1) The internal diameter, d2



Solution :

Working stress, ƒr

Also, working stress,  
ƒ

r

= Ultimate stress = 480 = 120 N/mm2

Factor of safety 4

= Load = P

Area

A
Area =

Working 
Stress

Load

2000 × 103
12
0

= = 16666.666 
mm

2

Let d2 be the internal diameter of the column, 
then л

4
Area,  A =

×

(d

− d

1

2

2

2

)

л
4

(
216666.666 = × 200 − d2

2
)

21220.662 = 40000 –
d2

2

2
d2  = 18779.338

d2 = √18779.338 =

Unit – II P4.5

137.038 mm

Result : 1) The internal diameter, d2 = 137.038 
mm

STRESS – STRAIN DIAGRAM

Example : 4.9 (Apr.92)

The following observations were obtained on a mild steel
specimen having an initial gauge length of 50mm and initial diameter
of 16mm: Load at yield point = 60KN; Maximum load = 88KN; load at
fracture = 64KN; Distance between gauge points after fracture = 68.8
mm; Diameter of the neck = 9.2mm. Determine the 1) yield stress, 2)
ultimate stress, 3) nominal stress at the fracture,
4) percentage elongation and 5) percentage reduction in area.
Given : Initial diameter, d = 16 mm  

Diameter of the neck, d0 = 9.2 mm  

Initial gauge length, l = 50 mm

Distance between gauge points

after fracture, l0 = 68.8 mm
Load at yield point = 60 KN = 60 × 103 N

Maximum load = 88 KN = 88 × 103 N

Load at fracture = 64 KN = 64× 103 N

2) Ultimate stress
4) Percentage of 
elongation

To find : 1) Yield stress
3) Nominal stress at fracture
5) Percentage reduction in 
area



4

4

Solution :

Original area of cross section, A = л × d2  = л × 162 = 201.06 mm2

0
л
4 0

2 л
4

Area of neck after fracture, A  = × d =
× 9.2 = 66.48 mm

2

2

Yield stress =
Load at the yield 
pointOriginal area of cross 

section
=

60 × 103

201.0
6

= 298. 42 
N/mm2

Ultimate stress = Maximum 
load Original area of cross 

section
=

88 × 103

201.0
6

= 437. 68 
N/mm2

Maximum stress at fracture = Load at the fracture
Original area of cross 
section

=
64 × 103

201.0
6

= 318. 31 
N/mm2

l 50

(l
0  

− l) (68.8 − 50)
Pecentage elongation = × 100 = × 100 = 37. 6%

(A − A0))
Pecentage reduction in area = × 100

201.0
6

A
(201.06 − 66.48)

= × 100 =

Unit – II P4.6

66. 94 %

Result : 1) Yield stress = 298.42 N/mm2

2) Ultimate stress = 437.68 N/mm2

3) Nominal stress at fracture = 318.31 
N/mm2

4) Percentage of elongation = 37.6 %
5) Percentage reduction in area = 66.94 %

BARS OF VARYING CROSS SECTIONS

Example : 4.10 (Oct.92, Oct.04)

A stepped bar of 1m length is composed of two segments of
equal length. The first segment is 20×20mm square and the other is
40×40mm square in size. Calculate the elongation of the bar, when the
maximum tensile stress in the material is 200N/mm2 due to an axial
tensile force. Take E = 2 × 105N/mm2.

Given : Area of the first segment, A1  = 20 × 20 = 400 
mm2

Area of the second segment, A2  = 40 × 40 1600 mm2

Maximum stress in the material, ƒ = 200 N/mm2



Young’s modulus, E = 2 × 105 N/mm2

Length of the first segment, l1 = 500 mm  

Length of the second segment, l2 = 500 mm

To find : 1) Total change in length, ðl

Solution :

Maximum tensile stress occurs only in the segments having small 
area of  cross section. So, the stress in the first segment, ƒ1=200 N/mm2

Load on the material, P = ƒ1 × A1 = 200 × 400 = 80000 N

P l1 P l2
Total change in length, ðl = +A1 E A2 E

=  80000 × 500 + 80000 × 500

400 × 2 × 105 1600 × 2 × 105 = 0. 625 mm

Result : 1) Total change in length, 6l  = 0.625 mm

Example : 4.11 (Oct.98)

A steel bar is 500mm long. The two ends are 35mm and 25mm
in diameter and each end portion is 150mm long. The middle portion is
200mm long and 20mm in diameter. Calculate the total extension in the
bar if it carries an axial pull of 30KN. Take E=200KN/mm2.

,

Given : Load, P   =   30KN = 30 × 103  N
Diameter of the first portion, d1 = 35 mm  

Length of the first portion, l1 = 150 mm

Diameter of the second portion, d2    =   20 mm
Length of the second portion, l2 = 200 mm  

Diameter of the third portion, d3 = 25 mm

Length of the third portion, l3 = 150 mm

Young’s modulus, E = 200 KN/mm2 = 2 × 105 N/mm2

To find :  1) Total change in length, ðl

Solution :

1

1

4

4

Area of the first portion, A  = л × d 2 = л × 352 = 962.113 mm2

4
2

2

4
Area of the second portion, A  = л × d 2 = л × 202 = 314.159 mm2

4
3

3

4
Area of the third portion, A  = л × d 2 = л × 252 = 490.874 mm2

P l1 P l2
P l3

Total change in length, ðl = +
+

A1 E A2 E
A3 EUnit – II P4.7



= P
l1 + l2 + l3

E [A1

A2

A3]

30 × 103   150 200 150 
= +

+
=  2 × 105  [962.113

314.159
490.874]

0. 1647 mm

Result : 1) Total change in length, 6l  = 0.1647 
mm
Example : 4.12 (Oct.98)

A steel bar is 450mm long. The two ends are 15mm diameter
and have equal lengths. It is subjected to a tensile load of 15KN. If the
stress in the middle portion is limited to 160N/mm2, determine the
diameter of that portion. Find also the length of the middle portion if
the total elongation of the bar is 0.25mm. Young’s modulus of the
material is given as E = 2 × 105N/mm2.
Given : Total length of the bar, l = 450 mm  

Diameter of two end portions, d1 = d2 = 15 mm

Total load, P   =   15 KN = 15 × 103  N
2

Stress in the middle portion, ƒ2  = 160 N/mm
Total elongation, ðl = 0.25 mm  

Young’s modulus, E = 2 × 105 N/mm2

To find :  1) Diameter of the middle portion, 
d2

2) Length of middle portion, l2

Fig.P4.1 Bar of varying sections [Exapmle 4.12]

Solution :

Let d2 be the diameter of the middle portion

Then, ƒ2 = P
A2

P

2

∴ A2 = ƒ =
15 × 103

16
0

= 93.75 mm2

2
л
4

Also,  A   =

× d

2
2

4 293.75 = л × d 2

2d 2 = 119.366 ; 2d  = 10.925 mm

Unit – II P4.8



1

3

1

4

4

Area of the end portion, A  = A  = л × d 2 = л × 152 = 176.715 mm2

Let, the length of the end portion, l1 = l3 = x

Length of the middle portion, l2 = 450 − 2x

Total elongation of the bar, ðl = P
l1 + l2 + l3

E [A1

A2

A3]

0.25 = +
2 × 105   [176.715

Unit – II P4.9

15 × 103 x
450 − 2x
x

+
93.75

17
6.715]0.25 = 0.075[0.0056588x + 4.8 − 0.0213333x + 

0.0056588x]

3.3333333 = 4.8 − 0.0100157x

x = 1.4666667 = 146.437
0.0100157

Length of the middle portion,  l2  = 450 − 2x= 450 − (2 × 146.437) = 157.126 mm

Result :   1) Diameter of middle portion, d2 = 10.925 mm

2) Length of middle portion, l2 = 157.126 
mm

SHEAR STRESS

Example : 4.13 (Apr.93)

A steel punch can be worked on to the compressive stress of
800N/mm2. Find the least diameter of the hole which can be punched
through a steel plate 28mm thick if the ultimate shear stress for the
plate is 360 N/mm2.

Given : Compressive stress on punch, ƒ = 800 N/mm2

Thickness of steel plate, t =  23 mm  

Shear stress, ƒs  = 300 N/mm2

To find : 1) Least diameter of hole, d

Solution :

Let the least diameter of the hole = d

Diameter of the punch = Diameter of the hole = d

Compressive force from the punch = Compressive stress ×

Area of the punch

= P  × л × d2  = 800 × л × d2  

4 4
= 628.318 d2



Resisting force from the plate = Shear stress ×Resisting area of the 
plate

= ƒs  × лdt    = 300 × л × d × 23

= 21676.984 d

We know that,

Compressive force from the punch = Resisting force from the plate

628.318 d2 = 21676.984 dd = 21676.984 =  
628.318

34. 5 mm

Result : 1) The least diameter of the hole, d  = 34.5 
mm

LATERAL STRAIN, POISSON’S RATIO, VOLUMETRIC STRAIN,  

ELASTIC CONSTANTS

Example : 4.14 (Apr.01, Oct.04, Oct.13, Apr.17)

A steel bar of 25mm diameter and length of 1m is subjected to
a pull of 25KN. If E = 2 × 105N/mm2, find the elongation, decrease in
diameter and increase in volume of the bar. Take 1/m = 0.25.

Given : Diameter of the steel bar, d = 25 mm
Length of the steel bar, l = 1 m = 1000 mm  

Young’s modulus, E = 2 × 105 N/mm2

Poison’s ratio, 1/m = 0.25

2) Change in diameter, 
ðd

4

4

To find : 1) Change in length, ðl
3) Change in volume, ðV

Solution :

Area of the steel bar, A = л × d2 = л × 252 = 490.874 mm2

Volume of the steel bar, V = A × l = 490.874 × 1000 = 490874 mm3

P Longitudinal strain,  e =
=

A E

25 × 103

490.874 × 2 × 105
= 2.5465 × 10

Unit – II P4.10

−4

Change in length,  ðl = Longitudinal strain ×
Length 0.25465 mm= 2.5465 × 10−4  × 1000 =

Poisson's ratio = Lateral strain
Longitudinal strain

Lateral strain = Poisson's ratio × Longitudinal strain

= 0.25 × 2.5465 × 10−4  = 6.36625 × 10−5

Change in diameter, ðd = Lateral strain × Diameter

= 6.36625 × 10−5 × 25 = 1. 5916 × 10−3  mm



2
Volumetric strain = e [1 −    ]m

= 2.5465 × 10−4[1 − 2 × 0.25] = 1.27325 × 10−4

Change in volume, ðV  = Volumetric strain × Volume
= 1.27325 × 10−4  × 490874 =

Result :   1) Change in length, 6l = 0.25465 mm

62. 5 mm3

2) Change in diameter, 6d= 1. 5916 × 10−3  mm
3) Change in volume, 6Y  = 62. 5 mm3

Example : 4.15 (Apr.99, Apr.02)

A steel bar of 500mm length, 60mm width and 20mm thickness
is subjected to an axial compression of 168KN. Calculate the final
dimension and final volume of the bar. The modulus of elasticity of steel
is 2. 1 × 105N/mm2 and the Poisson’s ratio of steel is 0.3.

Given : Length of the steel bar, l  = 500 mm
Width, b = 60 mm  

Thickness, t = 20 mm
Axial compressive load, P = 168 KN = 168 × 103 N  

Young’s modulus, E = 2.1 × 105N/mm2  

Poisson’s ratio, 1/m = 0.3

To find :

1) Final length 2) Final width 3) Final 
thickness

Solution :

4) Final 
volume

Volume of the bar, V = b × t × l = 60 × 20 × 500 = 600000 mm3  

Area of the bar along the longitudinal direction,

A = b × t = 60 × 20 = 1200 mm2

P 168 × 103
Longitudinal strain,  e = = = 6.667 ×
10 A E 1200 × 2.1 × 105

Unit – II P4.11

−4

Change in length,  ðl = Longitudinal strain × Length

= 6.667 × 10−4 × 500 = 0.3333 mm

Final length = Original length − Change in length (∵ Compression)

= 500 − 0.3333 = 499.6667 mm

Poisson's ratio = Lateral strain

Longitudinal strain

Lateral strain = Poisson's ratio × Longitudinal 
strain

= 0.3 × 6.667 × 10−4  = 2 × 10−4



Change in width,  ðb = Lateral strain × Width

= 2 × 10−4 × 60 = 0.012 mm

Final width = Original width + Change in width (∵ Width increases)

= 60 + 0.012 = 60.012 mm

Change in thickness, ðt = Lateral strain × Thickness

= 2 × 10−4 × 20 = 0.004 mm

Final thickness = Original thickness

+ Change in thickness (∵ Thickness increases)

= 20 + 0.004 = 20.004 mm

2
Volumetric strain = e [1 −    ]m

= 6.667 × 10−4[1 − 2 × 0.3] = 2.667 × 10−4

Change in volume, ðV = Volumetric strain × Volume

= 6.667 × 10−4 × 600000 = 160 mm3

Final volume = Original volume

– Change in volume (∵ Volume decreases)
= 600000 − 160 = 599840 mm3

Result :  1) Final length = 499.6667 mm  2) Final width = 60.012 mm
3) Final thickness = 20.004 mm 4) Final volume = 599840 mm3

Example : 4.16 (Oct.01)

A spherical ball of diameter 200mm when subjected to a
hydrostatic pressure of 10 N/mm2 is found to shrink to a ball of
199.7mm. If the Poisson’s ratio of the ball is 0.3, find the Young’s
modulus of the material of the ball.

Given : Diameter of the 
spherical ball, d

Unit – II P4.12

= 200 mm
= 199.7 mm
= 0.3
= 10 N/mm2

Diameter of the ball after shrinking, 
d0
Poisson’s ratio, 1/m
Hydrostatic pressure

To find : 1) Young’s modulus, E

Solution :Stress , ƒ = Hydrostatic pressure = 10 N/mm2

Change in diameter , ðd  = d − d0  = 200 − 199.7 = 0.3 mm

Lateral strain = Change in diameter = 0.3 = 0.0015
Original diameter 200

Poisson's ratio = Lateral strain

Longitudinal strain



Longitudinal strain = Lateral strain = 0.0015 = 0.005
Poisson's ratio0.3

Young's modulus, E = Stress =10 =
Longitudinal strain

0.005

2000 N/mm2

Result : 1) Young’s modulus E = 2000 
N/mm2

Example : 4.17 (Oct.92, Oct.16, Apr.17)

A circular bar of length 150 mm and diameter of 50mm is
subjected to an axial pull of 400KN. The extension in length and
contration in diameter were found to be 0.25mm and 0.02mm
respectively after loading. Calculate (i) Poisson’s ratio (ii) Young’s
modulus
(iii) Modulus of rigidity and (iv) Bulk modulus.
Given : Length of the bar, l = 150 mm  

Diameter of the bar, d = 50 mm
Load, P   =   400 KN = 400 × 103  N

Change in length, ðl = 0.25 mm  
Change in diameter, ðd = 0.02 mm

To find :  1) Poisson’s ratio, 1/m
3) Modulus or rigidity, 
C

Solution :

2) Young’s modulus, E
4) Bulk modulus, K

Area of the steel rod, A = л × d2 = л × 502 = 1963.495 mm2

4 4

Change in length , ðl = P l
A E

E =

=

P  l 400 ×
103  × 150A ðl

1963.
495 × 0.25

= 1. 2223 × 105  

N/mm2

m Longitudinal strain

1.6667 × 10−3

Lateral strain = ðd = 0.02 = 0.0004
d 50

Longitudinal strain, e = ðl = 0.25 = 1.6667 × 10−3

l 150
Poisson's ratio, 1 = Lateral strain =0.0004 = 0. 24

1
We know that, E = 2C [1 +  ]m  

1.2223 × 105 = 2C[1 + 0.24]

C =
1.2223 × 105

2 × 1.24
=

Unit – II P4.13

4. 9286 × 104  

N/mm2



2 1
E  = 3K [1 − m] = 3K [1 − 2 × m]

1.2223 × 105  = 3K[1 − 2 × 0.24]

K =
1.2224 × 105

3 × 0.52
= 7. 8353 × 104  

N/mm2

Result :   1) Poisson’s ratio, 1/m = 0.24

2) Young’s modulus, E=1. 2223 × 105  N/mm2

3) Rigidity modulus, C  = 4. 9286 × 104  

N/mm2

4) Bulk modulus, K  = 7. 8353 × 104  N/mm2

Example : 4.18 (Apr.01)

A steel bar of 30mm diameter is subjected to a tensile load of
70KN. Length of the bar is 400mm. Calculate (i)Extension of the bar
under the load 70KN (ii)The change in diameter (iii)Bulk modulus if
Young’s modulus of the material is 200KN/mm2 and 1/m = 0.22.

Given : Diameter of the bar, d = 30 mm
Length of the bar, l  = 400 mm

Tensile load, P   =   70 KN = 70 × 103  N  
Poisson’s ratio, 1/m = 0.22

Young’s modulus, E   =   200 × 103N/mm2

To find : 1) Change in 
length, ðl

3) Bulk modulus, K

Solution :

2) Change in diameter, 
ðd

Area of the steel bar, A = л × d2 = л × 302 = 706.858 mm2

4 4

P   70 × 103

Longitudinal strain, e = =A E 706.858 × 200 ×
103

= 4.951 × 10

Unit – II P4.14

−4

Change in length , ðl = Longitudinal strain ×
Length = 4.951 × 10−4  × 400 =

Poisson's ratio, 1/m = Lateral strain

0.198 mm

Longitudinal strain

Lateral strain = Poisson's ration × Longitudinal 
strain

= 0.22 × 4.951 × 10−4  = 1.0892 × 10−4

Change in diameter , ðd  = Lateral strain × Diameter= 1.0892 × 10−4 × 30 = 3. 2676 × 10−3mm

2 1
We know that, E  = 3K [1 − m] = 3K [1 − 2 × m]



200 × 103  = 3K[1 − 2 × 0.22]

K =
200 × 103

3 × 0.56
= 1. 19048 × 105  

N/mm2

Result : 1) Change in length, 6l = 0.198 mm

2) Change in diameter, 6d = 3. 2676 × 10−3mm

3) Bulk modulus, K  = 1. 19048 × 105  N/mm2

Example : 4.19 (Apr.94, Apr.03)

For a given material, the Young’s modulus is 1 × 105

N/mm2 and modulus of rigidity is 0. 4 × 105 N/mm2. Find the bulk
modulus and lateral contraction of a round bar of 50mm diameter and
2.5m long when stretched by 2.5mm.

Given : Young’s modulus, E   =   1 × 105  N/mm2

Rigidity modulus, C =  0.4 × 105 N/mm2

Diameter of the bar, d = 50 mm
Length of the bar, l = 2.5 m = 2500 mm  

Change in length, ðl = 2.5 mm

To find : 1) Bulk modulus, K 2) Change in diameter, 
ðd

Solution :

m

1
We know that, E = 2C [1 +  ]

m
1 × 105  = 2 × 0.4 × 105 

[1 + 1 ]

1 1 × 105

[1 + m] = 2 × 0.4 × 105  = 1.25
1 = 1.25 − 1 = 0.25
m

Also, E  = 3K [1 − 2 ] = 3K [1 − 2 × 1
]

m m

1 × 105  = 3K[1 − 2 × 0.25]

K =
1 × 105

3 × 0.5
=

Unit – II P4.15

0. 667 × 105  

N/mm2

Longitudinal strain, e = ðl = 2.5 = 0.001
l 2500

Poisson's ratio, 1/m = Lateral strain

Longitudinal strain



Lateral strain = Poisson's ratio × Longitudinal 
strain

= 0.25 × 0.001 = 0.25 × 10−3

Change in diameter, ðd = Lateral stain × Diameter= 0.25 × 10−3 × 50 = 0. 0125 mm

Result : 1)   Bulk modulus, K  = 0. 667 × 105  

N/mm2

2)   Change in diameter, 6d = 0.0125 mm

Example : 4.20 (Apr.90, Oct.91, Apr.04)

In a tensile test on a hollow tube of external diameter 18mm
and internal diameter 12mm, an axial load of 1700N produced an
elongation of 0.0045mm in length of 75mm while diameter suffered a
compression of 0.00032mm. Calculate the Poisson’s ratio, Young’s
modulus and bulk modulus.

Given : External diameter of the tube, d1 = 18 
mm  Internal diameter of the tube, d2 = 
12 mm

Axial load, P = 1700 N  
Change in length, ðl = 0.0045 mm

Length, l = 75 mm  
Change in diameter, ðd = 0.00032 mmTo find : 1) Poisson’s ratio, 1/m

3) Bulk modulus, K

Solution :

2) Young’s modulus, E

лArea of tube,  A =
×

(d

− d

1

2

2

2

л
4 4

)

(

2

2

)= × 18 − 12
= 141.372 mm

2

Lateral strain = ðd = 0.00032 = 1.778 × 10−5

d1 18

Longitudinal strain, e = ðl = 0.0045 = 6 × 10−5

Poisson ratio, 1/m 
=

=

l 75

Lateral strain
1.778 × 10−5Longitudinal strain

6 × 10−5

= 0. 2963

Stress, ƒ = Load = 1700 = 12.025 N/mm2

e

6 × 10−5

Area
141

.372
ƒ

12.
025

Young's modulus, E  = =
=

2. 0042 × 105  

N/mm2

2 1
We know that, E = 3K [1 − m] = 3K [1 − 2 × m]

2.0042 × 105  = 3K[1 − 2 × 0.2963]

K =
2.0042 × 105

3 ×
0.4074

=

Unit – II P4.16

1. 6398 × 105  

N/mm2



Result : 1)   Poisson’s ratio, 1/m = 0.2963

2) Young’s modulus, E = 2. 0042 × 105 N/mm2

3) Bulk modulus, K  = 1. 6398 × 105  N/mm2

Example : 4.21 (Oct.94, Oct.17)

A bar of steel 28mm diameter and 250mm long is subjected to
an axial load of 80KN. It is found that the diameter has contracted by
1/240mm. If the modulus of rigidity is 0. 8 × 105N/mm2, calculate
(1) Poisson’s ratio (2) Young’s modulus and (3) Bulk modulus.

Given : Diameter, d = 28 mm  

Length , l = 250 mm

Axial load, P   = 80 KN = 80 × 103 N
Change in diameter, ðd = 1/240 = 4.1667 × 10−3 mm  

Modulus of rigidity, C = 0.8 × 105 N/mm2

2) Young’s modulus, ETo find : : 1) Poisson’s ratio, 1/m
3) Bulk modulus, K

Solution :

Area , A = л × d2 = л × 282 = 615.752 mm2

4
ðd
d

Lateral strain = =

4

4.1667 × 10−3

28
= 1.4881 × 10−4

Longitudinal strain, e =
=

=
P 80 × 103

129.922A E 615.752 ×
E EPoisson's ratio, 1/m  = Lateral strain

Longitudinal 
strain=
1.4881 × 10−4

(129.922/E
)

−6= 1.14538 × 10    E

1
We know that, E = 2C [1 +  ]m

E  = 2 × 0.8 × 105(1 + 1.14538 × 10−6E)

E = 1.6 × 105 + 0.18326E  

(1 −  0.18326) E = 1.6 × 105

E =
1.6 × 105

0.8167
4

=

Unit – II P4.17

1. 959 × 105  

N/mm2

Poisson ratio, 1 = 1.14538 × 10−6 × 1.959 × 105 =
m

0. 2244



2
Also, E = 3K [1 −  ] m

1.959 × 105 = 3K[1 − 2 × 0.2244]

K =
1.959 × 105

3 × 0. 
.5512

= 1. 1847 × 105  

N/mm2

Result : 1)   Poisson’s ratio, 1/m = 0.2244

2) Young’s modulus, E = 1. 959 × 105 N/mm2

3) Bulk modulus, K  = 1. 1847 × 105  N/mm2

COMPOSITE BARS

Example : 4.22 (Oct.92, Oct.15, Apr.17)

Two vertical wires each 2.5mm diameter and 5m long jointly
support a weight of 2.5KN. One wire is steel and the other is of different
material. If the wires stretch elastically 6mm, find the load taken by
each and the value of Young’s modulus for the second wire if that of
steel is 0. 2 × 106 N/mm2.

Given : Diameter of the wire, d = 2.5 mm
Length of each wire, l = 5 m = 5000 mm  

Elongation of each wire, ðl = 6 mm

Total load, P = 2.5 KN = 2500 N  

Young’s modulus of steel, E1 = 0.2 × 106 N/mm2

To find : 1) Load taken by each wire P1 & P2

2) Young’s modulus of the second wire, E2

Solution :
4

4

Area of each wire, A1 = A2 = л × d2 = л × 2.52 = 4.909 mm2

We know that, elongation, ðl 
=

P1 l

A1 E1
A1 E1 ðl

P1 =

=

4.909 × 0.2 × 106  × 6

l
500

0

= 1178. 16 N

Total load = P1 + P2

2500 = 1178.16 + P2

P2  = 2500 − 1178.16 = 1321. 84 N

Also elongation, ðl =
P2 l

A2 E2

2 A2   ðl
4.90

9 × 6 Unit – II P4.18

6 = 1321.84 × 5000

4.909 × E2P2 l
E   = = 1321.84 ×
5000 = 2. 244 × 105  

N/mm2



Result : 1) Load taken by first wire, P1 = 1178.16 N

2) Load taken by second wire, P2 = 1321.84 N

3) Young’s modulus of second wire, E2 = 2. 244 × 105 N/mm2

Example : 4.23 (Oct.93, Oct.02)

A solid copper rod 36mm diameter is rigidly fixed at both ends
inside a tube of 45mm inside diameter and 50mm outside diameter. The
composite section is then subjected to an axial pull of 98KN. Determine
the stresses induced in the rod and tube and total elongation of the
composite section in length of 1m. E for copper is 1. 1 × 105N/mm2 and
E for steel is 2 × 105N/mm2.

Fig.P4.2 Composite bar [Exapmle 4.23]

Given : Diameter of solid copper rod, dc = 36 mm

External diameter of steel tube, d1 = 50

mm Internal diameter of steel tube, d2 =

45 mm

Axial pull, P = 98 KN = 98 × 103 N

Length of composite section, l = 1 m = 1000 mm

Young’s modulus of copper, Ec  = 1.1 × 105 N/mm2

Young’s modulus of steel, Es  = 2 × 105 N/mm2
To find : 1) The stress induced in the copper, 

ƒc

2) The stress induced in the steel, ƒs

3) Total elongation, ðl

Unit – II P4.19



Solution :
Area of copper rod, Ac = л × dc 

2 = л × 362 = 1017.876 mm2

4 4

i

Area  of steel tube, As  = л
× (d 2 − d 2) = л × (502  

−
452) = 

373.
064 mm2

4
In a composite bar, the
strain

1

per
un

2

t
leng

4
th

will

be
same

for both
th

e
materials.i.e.

ƒs = ƒc

Es

Ecƒs = Ec

Es  × ƒc 2 ×
105  × ƒc 1.1 ×

105

= = 1.818 
ƒc

– − − − − (1)

Total load = Ps + Pc = ƒs As + ƒc Ac  

98000 = 373.064 ƒs  + 1017.876 

ƒc

Substitute the value of ƒs in (2), we get

98000 = (373.064 × 1.818 ƒc) + 1017.876 
ƒc

98000 = 1696.106 ƒc

– − − − − (2)

c 1696.10
6

ƒ = 98000 = 57.779 
N/mm2

Substitute the value of ƒc in (1), we 
get 105. 042 

N/mm2

ƒs  = 1.818 × 57.779 =
ƒs l

ƒ

c l
Total elongation, ðl =

(or)

Es

Ec
= 57.779 × 1000 (or) 105.042 × 1000

1.1 × 105 2 × 105

= 0. 5253 mm

Result :  1) The stress induced in the copper, ƒc = 57.779 N/mm2

2) The stress induced in the steel, ƒs = 105.042 N/mm2

3) Total elongation, 6l = 0.5253 mm

Example : 4.24 (Oct.13, Apr.15)

A copper rod of 30mm diameter is surrounded tightly by a cast
iron tube 60mm external diameter, their ends being firmly fastened
together. When they are subjected to a compressive load of 12KN
axially, what load is taken by each member? Also determine the
contraction of the bar if their length is 100mm originally. The Young’s
modulus of copper is 0. 1 × 106 N/mm2 and that of C.I is 0. 12 × 106

N/mm2.

Given : Diameter of the copper rod, dc = 30 mm

External diameter of C.I tube, d1 = 60 mm

Internal diameter of C.I tube, d2 = 30 mm

Total load, P = 12 KN =12 × 103 NUnit – II P4.20



Young’s modulus of copper, Ec =  

Young’s modulus of C.I, Eci  =

To find : 1) Load taken by the copper rod, Pc

2) Load taken by the C.I tube, Pci

3) Contraction of the bar, ðl

0.1 × 106 N/mm2

0.12 × 106 

N/mm2

Fig.P4.3 Composite bar [Exapmle 4.24]

Solution :

4

4

Area  of copper rod, Ac  = л × dc 
2  = л × 302  = 706.858 mm2

ci
л
4

( 1

2

2

2

)
л
4

2

2

Area of CI tube, A =  × d − d =  ×(60 − 30 
)=2120.575 mm

2

In this composite 
bar,

cLoad taken by the copper rod, P  
=

P × Ac Ec

A
c 

E
c 

+ A
ci 

E
ci

=
12 × 103 × 706.858 × 0.1 × 106

=
(706.858 × 0.1 × 106

) + (2120.575 × 0.12 × 106
)

Total load , P = Pc + Pci

2608. 695 N

12 × 103  = 2608.695 + Pci

Load taken by the CI tube, Pci = 12 × 103 − 2608.695 = 9391. 305 N
Pc l

Contraction of the bar, ðl= = 2608.695 × 100
A

c 
E

c 706.858 ×
1 × 105

= 3.691×10-3 mm

Result : 1) Load taken by the copper rod, Pc = 
2608.695N

2) Load taken by the C.I tube, Pci = 9391.305N

3) Contraction of the bar, 6l = 3.691×10-3 mmUnit – II P4.21



Example : 4.25 (Apr.92)

A tube of aluminium 40mm external diameter and 20mm
internal diameter is snugly fitted on to a steel rod of 20mm diameter.
The composite bar is loaded in compression by an axial load P. Find the
stress in aluminium when the load is such that the stress in steel rod is
70N/mm2. What is the value of P, if E for steel is 2 × 105 N/mm2 and E
for aluminium is 0. 7 × 105 N/mm2.

Given : Diameter of the steel rod, ds = 20 mm

External diameter of aluminium tube, d1 = 40

mm Internal diameter of aluminium tube, d2 =

20 mm Stress induced in steel rod, ƒs  = 70 N/mm
2

Young’s modulus of steel, Es  = 2 × 105 N/mm2

Young’s modulus of aluminium, Ea  = 0.7 × 105 N/mm2

To find : 1) The stress induced in aluminium tube, ƒa

2) The total axial load, P

Solution :

4

4

Area  of steel rod, Ac  = л × ds 
2  = л × 202  = 314.159 mm2

a 1

2

4

4

Area  of aluminium tube, A   = ×(d − d    )=    ×(40   
− 20  )=942.478 mm

л 2 2

π 2

2 2In a composite bar, the strain per unit length will be same for both 
the materials.

i.e.
ƒs = ƒa  

Es

Ea

Ea × ƒs

s

ƒa =

=

0.7 × 105 × 70
E 2 
× 105

=

Unit – II P4.22

24. 5 N/mm2

Total load, P = Ps As + Pa Aa
= (70 × 314.159) + (24.5 × 942.478) = 45081. 841 

N
Result :  1)   The stress induced in aluminium tube, ƒa  = 24. 5 
N/mm2

2) The total axial load, P = 45081.841N
Example : 4.26 (Oct.95, Apr.14)

A steel tube 100mm internal diameter and 12.5mm thick is
surrounded by a brass tube of the same thickness in such a way that the
axes of the two tubes coincide. The compound tube is loaded by an axial
compressive load of 5KN. Determine the load carried by each tube, the
stresses and strain developed in each tube. Assume that there is no
buckling of the tubes. Take Young’s modulus for steel as 2 × 105 N/mm2

and that for brass as 1 × 105 N/mm2. The tubes are of the same length.



Fig.P4.4 Composite bar [Exapmle 4.26]

Given : Internal diameter of the steel tube, d2 = 100 mm

Thickness, t = 12.5 mm

Load, P  = 5 KN = 5000 N

Young’s modulus of steel, Es  = 2 × 105 N/mm2

Young’s modulus of brass, Eb   = 1 × 105 N/mm2

To find :  1) Load carried by the steel tube, Ps

2) Load carried by the brass tube, Pb

3) Stress in steel tube, ƒs

4) Stress in brass tube, ƒb

5) Strain developed in each tube, es or eb

Solution :

External diameter of steel tube, d1 = d2+2t=100+(2×12.5)=125 
mm

Internal diameter of brass tube, D2 = d1 = 125 mm

External diameter of brass tube, D1 = D2+2t=125+(2×12.5)=150 
mmArea of steel tube, As = 1

2Area  of brass tube, Ab  
=

1 2 4

л ×
4

(d 2 − d 2) = π
×(
4

1252 − 1002)=441
7

.865 mm2

л ×(
4

D 2 − D 2)= π ×(1502 − 1252)=5399.612 
mm2

In this composite 
bar,

sStress induced in steel rod, ƒ =
P × Es

Es As + Eb Ab

Unit – II P4.23



=
5000 × 2 × 105

(2 × 105 × 4417.865) + (1 × 105 × 5399.612)
= 0. 7024 

N/mm2

bStress induced in brass tube, ƒ =
P × Eb

Es As + Eb Ab

5000 × 1 × 105

(2 × 105 × 4417.865) + (1 × 105 × 5399.612)
= = 0. 3512 

N/mm2

Load carried by steel tube, Ps = ƒsAs = 0.7024 × 4417.865 =   3103. 108 
N

Load carried by brass tube, Pb = P − Ps = 5000 − 3103.108=  1896.892 
N b

s

ƒs
ƒ

b
Stress developed in each tube, e or e =

(or)

Es

Eb
= 0.7024 (or) 0.3512 =

2 × 105 1 × 105
3. 512 × 10−6

Result :  1) Load carried by the steel tube, Ps  = 3103.108 N

2) Load carried by the brass tube, Pb = 1896.892 N

3) Stress in steel tube, ƒs = 0.7024 N/mm
2

4) Stress in brass tube, ƒb = 0.3512 N/mm
2

5) Strain developed in each tube, es = eb = 3. 512 × 10−6

Example : 4.27 (Oct.96)

A RCC column 300mm × 450mm has 4 number of 25mm steel
rods. Calculate the safe load for the column, if the allowable stress in
concrete is 5N/mm2 and E for steel is 15 times of E of concrete.

Unit – II P4.24

Given : Size of the column = 300 mm × 450 

mm  Diameter of one steel rod, ds = 25 mm

Number of steel rods = 4

Stress in concrete, ƒc  = 5 N/mm2

Young’s modulus of steel, Es  = 15 Ec

To find : 1) The safe load for the column, P

Solution :

Area  of the column   = 300 × 450 = 135000 mm2

4

4

Area  of one steel rod = л × ds 
2  = л × 252  = 490.874 mm2

Area  of one 4 steel rods = 4 × 490.874 = 1963.496 mm2  

Area of concrete, Ac = Area of column – Area of steel rods

= 135000 − 1963.496 = 133036.51 
mm2



In a composite bar, the strain per unit length will be same for both 
the materials. ƒs ƒc

ƒs
i.e. =

⇒

ƒc
=Es Ec

15 × Ec
Ec

ƒs  = 15 × ƒc  = 15 × 5 = 75 N/mm2

Load taken by steel rods, Ps = ƒs As = 75 × 1963.496 = 147262.20 N  

Load taken by concrete, Pc = ƒc Ac = 5 × 133036.51 = 665182.55 N  

Total safe load for the column, P = Ps + Pc

= 147262.20 + 665182.55 = 812444.75 N 
=

812.445 KN

Result : 1) The safe load for the column, P = 812.445 KN

Example : 4.28 (Apr.01)

A cast iron of 200mm external diameter and 150mm internal
diameter is filled with concrete. Determine the stress in cast iron and
concrete when an axial compressive load of 50KN is applied. Take E for
cast iron = 18 times of E for concrete.

Given : External diameter of C.I tube, d1 = 200 mm  

Internal diameter of C.I tube, d2 = 150 mm

Total load, P   =   50 KN = 50 × 103  N  

Young’s modulus of C.I, Eci = 18 Ec

To find :  1) Stress in cast iron tube, ƒci 2) Stress in 
concrete, ƒc

Solution :

Diameter of the concrete, dc = d2 = 150 mm

Area  of concrete, Ac  =   л × dc 
2  = л × 1502  = 17671.459 mm2

4 4
ci

л
4 1

2

2

2

Area of CI tube, A  = × (d  
− d  )

= л × (2002−1502) = 13744.468 mm2

4
In a composite bar, the strain per unit length will be same for both 
the materials.

E
ci

ƒc =
ƒ
c

ƒ
ciƒ
ci

i.e. =
⇒

Ec Ec
18 Ecƒci  = 18 × ƒc

Total load , P = Pc + Pci

Unit – II P4.25



P = ƒc × Ac + ƒci × Aci

50 × 103 = (ƒc × 17671.459) + (18 ƒc × 13744.468)

50 × 103  = 265071.883 ƒc

50 × 103

ƒc = 265071.883 =

Unit – II P4.26

0. 18863 
N/mm2

ƒci  = 18 × ƒc  = 18 × 0.18863 = 3. 39534 
N/mm2

Result :1)   The stress in cast iron tube, ƒci = 3. 39534 
N/mm2

2)   The stress in concrete, ƒc  = 0. 18863 N/mm2

TEMPERATURE STRESSES

Example : 4.29 (Apr.92)

Two parallel walls 6 m apart are stayed together by a steel rod
20mm diameter passing through metal plates and nuts at each end. The
nuts are tightened when the rod is at a temperature 100°C. Determine
the stress in the rod when temperature falls down to 20°C, if (i) the
ends do not yield (ii) the ends yield by 1mm. Take E = 2 × 105N/mm2

and a = 12 × 10−6/ °C. Find also the force exerted in both casees.

4

4

Given : Length of the steel rod, l = 6m = 6000 

mm  Diameter of the steel rod, d = 20 mm

Initial temperature, T1 = 100°C  

Final temperature, T2 = 20°C

Amount of yield, ß = 1 mm

Young’s modulus, E = 2 × 105 N/mm2

Co–efficient of linear expansion, α = 12 × 10−6 / °C

To find : 1) The stress when the ends do not yield

2) The force exerted when the ends do not yield

3) The stress when the ends yield by 1 mm

4) The force exerted when the ends yield by 1 mm

Solution :

Area of the rod, A =  л × d2 = л × 202 = 314.159 mm2

Fall in temperature,  T  = T1  − T2  = 100 − 20 = 80°C

The free expansion is prevented when the supports do not yield.

So, temperature stress, ƒ = α T E

= 12 × 10−6 × 80 × 2 × 105  = 192 N/mm2



Force exerted,  P  = ƒ  × A = 192 × 314.159 =

When the supports yield by 1 mm,

Unit – II P4.27

60318. 528 

N

l

ß
Temperature stress, ƒ  = [αT  −   ] E

1 
= [12 × 10−6 × 80 − ] 2 
× 105  = 6000

Force exerted,  F  = ƒ  × A = 158.667 × 314.159 =

158. 667 
N/mm2

49846. 666 

N
Result :1)   The stress when the ends do not yield = 192 N/mm2

2) The force exerted when the ends do not yield = 60318. 528 
N

3) The stress when the ends yield by 1mm = 158. 667 N/mm2

4) The force exerted when the ends yield by 1mm = 49846. 
666 NExample : 4.30 (Apr.93)

A railway is laid so that there is no stress in the rail at 50°C.
Calculate (i) the expansion allowance for no stress in the rail when the
temperature is 150°C (ii) the maximum temperature to have no stress in
the rail if the expansion allowance is 26mm per rail. Take a = 12 × 10−6/
°C and E = 2 × 105N/mm2. The length of the rails is 30m.

Given : Initial temperature, T1 = 50°
C

Final temperature, T2 = 150°C5 2Young’s modulus, E = 2 × 10 N/mm  

Co–efficient of linear expansion, α   =   12 × 10−6/ 

°C Length of the rails, l   =   30 m = 30 × 103mm

Solution :

Rise in temperature,  T  = T2  − T1  = 150 − 50 = 100°C

(i) To find the expansion allowance for no stress in the rail

Let ß be the expansion allowance

When there is no stress in the rails, temperature stress 
= 0

l

ß
[αT  −   ] E  = 0

30 × 103

ß
[12 × 10−6 × 100 − ] × 2 ×
105  = 0
36 − ß = 0

S = 36 mm
(ii) To find the maximum temperature to have no stress in the rails,

if S= 26mm

When there is no stress in the rails, temperature stress = 0



l

ß
[αT  −   ] E  = 0

30 × 103

26
[12 × 10−6 × T  − ] × 2 ×
105  = 0
0.36 T − 26 = 0

T = 26 = 72.222°C
0.36

Maximum temperature = Rise in temperature + Initial 

temperature
= 72.222 + 50 = 122. 222°C

Result : 1) The expansion allowance required for no stress in the 
rails  when the temperature is 150oC = 36 mm

2) The maximum temperature to have no stress in the 
rails,  if ß is 26mm = 122.222oC

STRAIN ENERGY, RESILIENCE & TYPES OF LOADING

Example : 4.31 (Apr.88, Apr.97, Apr.04, Apr.15, Apr.17)

Calculate the strain energy that can be stored in a steel bar
70mm in diameter and 6m long, subjected to a pull of 200KN. Assume
E=200 KN/mm2.

4

4

Given : Diameter of the steel bar, d = 70 mm

Length of the steel bar, l  = 6 m = 6000 mm

Load, P   = 200 KN =200 × 103 N

Young’s modulus, E = 200 KN/mm2 = 2 × 105 N/mm2

To find :   1) The strain energy, U

Solution :

Area of rod, A =  л × d2 = л × 702 = 3848.45 mm2

Volume of rod, V = A × l = 3848.45 × 6000 = 2.30907 × 107 mm3

Instantaneous stress, ƒ  =
=

P

200 × 103
A

3848.45

= 51.969 
N/mm

2

ƒ 2
Strain energy, U  =

× Volume
2 E

=
51.9692

2 × 2 × 105
× 2.30907 ×
10

Unit – II P4.28

7

= 155907 N-mm

Result : 1) The strain energy, U = 155907 N–mm



Example : 4.32

Calculate the modulus of resilience at a point in a material  
subjected to a stress of 200 N/mm2. Take E = 0. 1 × 106 N/mm2.

Given : Maximum stress, ƒmax  = 200 N/mm2

Young’s modulus, E = 0.1 × 106 N/mm2

To find : 1) Modulus of resilience

Solution :

ƒ 2 2002
Modulus of resilience = max = =2 E 2 × 0.1 × 106 0. 2 N/mm2

Result : 1) Modulus of resilience = 0.2 
N/mm2

Example : 4.33 (Oct.89, Apr.94, Oct.97, Oct.02,Oct.03)

A steel specimen 150mm2 cross section stretches by 0.05mm
over a 50mm gauge length under an axial load of 30KN. Calculate the
strain energy stored in the specimen at this stage, if the load at the
elastic limit for the specimen is 50KN. Calculate the elongation at elastic
limit and the proof resilience.

Given : Area of cross section, A = 150 mm2

Change in length, ðl = 0.05 mm  

Gauge length, l = 50 mm

Axial load, P   =   30 KN = 30 × 103  N  

Load at elastic limit, Pe    =   50 KN =  50 × 103  

N

To find :  1) Strain energy, U 2) Elongation, ðl 3) Proof resilience

Solution :

Volume, V  = A × l = 150 × 50 = 7500 mm3

Assume the rod is subjected to gradually applied load.
Instantaneous stress, ƒ 
=

Axila load 30 ×
103Area

150

= = 200 
N/mm

2

Change in length
Longitudinal strain, e = = 0.05 = 1 × 10−3

Longitudinal strain

1 × 10−3

Original length 50

Young's modulus, E  = Stress = 200    = 2 
× 105   N/mm2

ƒ 2
Strain energy stored, U =

×Volume =
2 E

2002

2×2×105
×7500 =

Unit – II P4.29

750 N-mm



Maximum instantaneous 
stress,

ƒ
max 

= =
Load at elastic limit

50 × 103Area 150
= 333.333 
N/mm

2

ƒ 2

2 × E
Proof resilience = max × Volume =

333.3332

2×2×105
×7500 = 2083.329 N-mm

E 2 
× 105

ƒmax × l
Elongation, ðl = = 333.333 × 50 = 0.0833 mm

Result : 1) Strain energy stored, U = 750 N–mm

2) Elongation at elastic limit, 6l = 0.0833 mm

3) Proof resilience = 2083.329 N–mm

Example : 4.34 (Oct.04)

A mild steel bar of 10mm diameter and 2m long is subjected to
an axial tensile load of 25KN applied suddenly. Find the stress induced
and the strain energy stored in the bar. Take E = 2 × 105N/mm2.

Given : Diameter of the bar, d = 10 mm

Length of the bar, l =  2 m = 2000 mm  

Load, P   =   25 KN = 25 × 103  N

Young’s modulus, E = 2 × 105 N/mm2

To find : 1) Stress induced, ƒ 2) Strain 
energy stored, U

Solution :
4

4

Area of the rod, A =  л × d2 = л × 102 = 78.540 mm2

Volume, V = A × l = 78.540 × 2000 = 157080 mm3

For suddenly applied load,

P

25 × 103

Instantaneous stress, ƒ  = 2 × = 2 ×
=

A 78.540

636. 618 
N/mm2

ƒ 2

2 × E
Strain energy stored, U = ×
Volume

=
636.6182

2 × 2 × 105
× 157080 =

Unit – II P4.30

159154. 429  N-mm

Result :  1) Stress induced in the rod, ƒ = 636.618 N/mm2

2) Strain energy stored, U = 159154.429 N–mm



Example : 4.35 (Oct.04 Apr.91, Oct.95, Oct.04, Apr.05)

Determine the greatest weight that can be dropped from a
height of 200mm on to a collar at the lower end of a vertical bar 20mm
diameter and 2.5m long without exceeding the elastic limit stress 300
N/mm2. Calculate also the instantaneous elongation. Take E = 2 ×
105N/mm2.
Given : Height, ℎ = 200 mm  

Diameter of the bar, d = 20 mm

Length of the bar, l = 2.5 m = 2500 mm  

Instantaneous stress, ƒ = 300 N/mm2

Young’s modulus, E = 2 × 105 N/mm2

To find : 1) The greatest weight that can be dropped, 
P

2) Elongation, ðl

4

4

Solution :

Area of the bar, A =  л × d2 = л × 202 = 314.159 mm2

Volume, V  = A × l = 314.159 × 2500 = 785397.5 mm3

E

2 × 105

ƒ  l 300 × 2500
Instantaneous elongation, ðl = =

=
3. 75 mm

Work done by the load, W = P (ℎ + ðl) = P (200 + 3.75) = 203.75 P

ƒ 2

2 × E
Strain energy stored in the bar, U =

× Volume
=

3002

2 × 2 × 105
× 785397.5 = 176714.438 N-
mm

Unit – II P4.31

Work done = Strain energy 
stored

203.75 P = 176714.438
P = 176714.438 =

203.75
867. 31 N

Result :  1) The greatest weight that can be dropped, P = 867.31 N

2) Elongation, 6l = 3.75 mm

Example : 4.36 (Oct.91)

A load of 100N falls by gravity through a vertical distance of
3m, when it is suddenly stopped by a collar at the end of a vertical rod
of length 6m and diameter 20mm. The top of the bar is rigidly fixed to a
ceiling. Calculate the maximum stress and strain induced in the bar.
Take E = 1. 96 × 105N/mm2.



Given : Falling weight, P = 100 N
Height of fall, ℎ = 3 m = 3000 mm  

Length of the rod, l = 6m = 6000 mm

Diameter of the rod, d = 20 mm

Young’s modulus, E = 1.96 × 105N/mm2

To find : 1) The maximum stress, ƒ 2) 
Strain, e

4

Solution :

Area of the rod, A =  л × d2 = л × 202 = 314.159 mm2

4

Instantaneous stress, p = P +
A

{
A2

P 2  
+ 2 E P  ℎ

A l

= 100    + 1002
+ 2 × 1.96 × 105 × 100 

× 3000
314.159 {314.1592 314.159 × 6000

250. 096 
N/mm2

= 0.318 + 249.778 =

ƒ
Instantaneous strain, e =

=
E

250.09
61.96 × 105

= 1. 276 × 10−3

Result : 1) The instantaneous stress, ƒ = 250.096 N/mm2

2) The Instantaneous strain, e = 1. 276 × 10−3

Example : 4.37 (Apr.93, Apr.13, Oct.16)

A weight of 1400N is dropped on to a collar at the lower end of
a vertical bar 3m long and 25mm in diameter. Calculate the height of
drop, if the maximum instantaneous stress is not to exceed 120N/mm2.
What is the corresponding instantaneous elongation. TakeE = 2 ×
105N/mm2.
Given : Falling weight, P  = 1400 N

Length of the bar, l = 3 m = 3000 mm  

Diameter of the bar, d = 25 mm  

Instantaneous stress, ƒ = 120 N/mm2

Young’s modulus, E =  2 × 105 N/mm2

To find :  1) The height of drop, ℎ 2) Eelongation, ðl

Solution :

4

4

Area of the bar, A =  л × d2 = л × 252 = 490.874 mm2

Volume, V  = A × l = 490.874 × 3000 = 1472622 mm3

ƒ  l
12

0 × 3000
Elongation, ðl = = =E 2 

× 105Unit – II P4.32

1. 8 mm



Strain energy stored in the bar, U 
=

ƒ 2

2 × E
×
Volume

=
1202

2 × 2 × 105
× 1472622 = 53014.392 N-
mm

Work done by the falling weight = P (ℎ + ðl) = 1400(ℎ + 1.8)

Work done = Strain energy stored

1400(ℎ + 1.8) = 53014.392

ℎ + 1.8 = 53014.392 = 37.8674
1400

ℎ = 37.8674 − 1.8 = 36. 0674 mm

Result : 1) The height of drop, h = 36.0674 mm

2) The instantaneous elongation, 6l = 1.8 mm

Example : 4.38 (Oct.92, Apr.01)

It is found that a bar of 36mm in diameter stretches 2mm under
a gradually applied load of 150KN. If a weight of 15KN is dropped on to
a collar at the lower end of this bar through a height of 60mm. Calculate
the maximum instantaneous stress and elongation produced. Assume E
= 215 KN/mm2.

Given : Diameter of the bar, d = 36 mm

Gradually applied load, P1    =   150 KN = 150 × 103  

NElongation under 
gradually

4

4

applied load = 2 mm
Falling weight, P  = 15 KN = 150000 N  

Height of fall of weight, ℎ = 60 mm

Young’s modulus, E = 215KN/mm2 = 2.15 × 105 N/mm2

To find :  1) The maximum instantaneous stress, ƒ

2) The maximum elongation, ðl

Solution :

Area of the bar, A =  л × d2 = л × 36 = 1017.876 mm2

P1l
Elongation under gradually applied load =A E

2 =
150 × 103  × l

1017.876 × 2.15 ×
105

l =
2 × 1017.876 × 2.15 ×
105 150 × 103

= 2917.911 
mm
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Maximum instantaneous stress due to falling 
weight,

A
ƒ = P + {

A2

P 2  
+ 2 E P  ℎ

A l

= 15000 + 150002     
+ 2 × 2.15 × 105  × 15000 ×

601017.876 {1017.8762 1017.876 ×
2917.911

= 14.7366 + 361.2714 = 376. 008 
N/mm2ƒ  l 376.008 × 2917.911

Maximum elongation, ðl = = =E 2.15 × 105 5. 103 mm

Result :  1) The maximum instantaneous stress, ƒ = 376. 008 N/mm2

2) The maximum elongation, 6l = 5.103 mm

Example : 4.39 (Apr.01)

A coach weighing 20KN (is attached to a rope) is traveling
down a slope at a speed of 2m/s. It is stopped suddenly by pulling the
rope. What is the instantaneous stress and the maximum tension
induced in the rope due to sudden stoppage. Assume the length and
cross sectional area of the rope to be 100m and 1000 mm2 respectively.
Take E = 2 × 105N/mm2.
Given : Weight of the coach, W    =   20 KN = 20 × 103  N  

Speed of the coach, u   =   2 m/s = 2000 mm/s  

Length of the rope, l   =   100 m = 100 × 103  

mm

Area of the rope, A = 1000 mm2

Young’s modulus, E = 2 × 105 N/mm2

To find :  1) The maximum instantaneous stress in the rope, ƒ
2) The maximum tension induced in the rope, T

Solution :
When the coach is suddenly stopped, the kinetic energy of the coach 

is  converted into strain energy of the rope.
i.e.

m u2 ƒ 2

2

2 E

=

× VolumeW u2 ƒ 2 W
= × A × l  (∵ 

m =
)   2 E

g

2g  

20 × 103 ×

20002

ƒ 2  × 1000 × 100 × 103

2 × 9.81 × 103 2 × 2 × 105
3

2

= (∵ g = 9.81 × 10 mm/s )

2ƒ =
2 × 2 × 105 × 20 × 103  × 20002

2 × 9.81 × 103 × 1000 × 100 × 103
= 16309.89

Unit – II P4.34

ƒ = 127. 71 
N/mm2



Maximum tension, T = Maximum stress × Area

= 127.71 × 1000 = 127710 N = 127. 71 KN

Result : 1) The maximum instantaneous stress, ƒ =127.71 N/mm2

2) The maximum tension induced in the rope, T = 127.71 KN

Unit – II P4.35



Unit – III

Chapter 5. GEOMETRICAL PROPERTIES

OF SECTIONS
1. Centre of gravity

The centre of gravity of a body may be defined as a point

through which the entire weight of the body is assumed to be

concentrated. It may be noted that every body has only one centre of

gravity. It is a term related with

a body having volume and mass i.e. solids.

1. Centroid

The centroid of a section may be defined as a point through

which the entire area of the section is assumed to be concentrated. It is the

term

related with plane figures like rectangle, circle, triangle, etc. having only

area but no weight. The method of finding out the centroid of a plane

figure is similar to that of centre of gravity of a solid body.

1. Centroid of a plane figure

Fig. 5.1 Centroid of a plane figure

Consider a plane figure of area A whose centroid is required to

be found out. Divide the plane area into number of small vertical strips

as shown in fig.5.1.

Let a1, a2, a3, etc. be the area of the strips and (x1, y1), (x2,

y2), (x3, y3), etc. be their co–ordinates of their centroids from a

fixed point O. Let, X̅ and Y ̅ be the co–ordinates of the centroid of the

plane figure.

Unit – III 5.1



Taking moment about Y–Y axis,

The moment of area of first strip =a1x1

Sum of the moment of areas of all such strips about Y–Y 

axis.

Σax = a1x1 + a2x2 + ⋯

The moment of area of the whole plane figure about Y–Y axis = 
AX̅

By the principle of moment, AX̅ = Σax

¯X = Σax

A
X̅ =

a1z1 + a2z2 + a3z3 + ⋯

a1 + a2 + a3 + ⋯

Y̅ = a1y1 + a2y2 + a3y3 + ⋯

a1 + a2 + a3 + ⋯Similarly,

Centroidal axis

A line passing through the centroid of the plane figure is known 
as

centroidal axis.

Axis of reference
A line about which the co–ordinates of centroid are calculated 

is  known as axis of reference or reference axis.

For plane figures, the axis of reference is taken as lowermost or

uppermost line of the figure for calculating Y̅ and left extreme line or

right extreme line of the figure for calculating X̅.

Axis of symmetry

The axis which divides a section into two equal halves 
horizontally
or vertically is known as axis of symmetry. The centroid of the section 

will  lie on this axis of symmetry.

5.4 Moment of inertia

The moment of inertia of a body about an axis is defined as the  

internal resistance offered by the body against the rotation about that 

axis.

The moment of inertia of a plane figure or lamina about an axis 

is  the product of its area and square of its distance form that axis.

Mathematically, moment of inertia, I = Za. r2Unit – III 5.2



5.5 Moment of inertia a plane figure

Fig.5.2 Moment of inertia of a plane figure

Consider a plane figure of area A whose moment of inertia is

required to be found out. Divide the plane area into number of small

elemental strips as shown in fig.5.2.

Let a1, a2, a3, etc. be the areas of the elemental strips and r1, r2,

r3,, etc. be the distance of their centroids from a fixed line AB.

First moment of area of the first strip about AB = a1r1

The second moment of area of the first strip about AB

1= a1. r1. r1  = a1. r 2

∴ The second moment of area of the plane figure about 
AB

1

2

= a1r 2 + a2r 2 + ⋯ = Σa. r2

This second moment of area is known as moment of inertia.

5.6 Parallel axis theorem

It states, if the moment of inertia of a plane area about an axis

passing through its centroid is denoted by IG then the moment of inertia of

the area about any other axis AB which is parallel to the first and at a

distance ℎ from

the centroidal is given by, IAB = IG + Ah2

Where, IAB = Moment of inertia of the area about an axis

AB. IG = Moment of inertia of the area about its

centroid A = Area of the section

ℎ = Distance between centroid of the section and axis
AB. Unit – III 5.3



Proof

Fig.5.3 Parallel axis theorem

Consider an elemental strip in a plane whose moment of inertia is  

required to be found out about an axis AB as shown in the fig.5.3

Let, ða = Area of the strip

y = Distance of C.G of strip from C.G of the section

ℎ = Distance of axis AB from the C.G of section.

We know that, the moment of inertia of the elemental strip 

about an  axis passing through the C.G of the section,

I  = ða. y2

Moment of inertia of the whole section about an axis passing  

through the C.G of the section,

IG = Σða y2

The moment of inertia of the section about the axis AB,

IAB = Σða(ℎ + y)2 = Σða(ℎ2 + y2 + 2ℎy)

= ℎ2Σða + y2Σða + 2ℎyΣða

= Aℎ2 + IG + 0

Σða. y = Ay = 0 (‡ First moment of area about centroidal axis = 0)

∴ IAB = IG + Ah2

Unit – III 5.4



5.7 Perpendicular axis theorem
It states, if Ixx and Iyy be the moments of inertia of plane section

about two perpendicular axes meeting at O, the moment of inertia Iss about

the axis Z–Z, perpendicular to the plane and passing through the

intersection of X–X and Y–Y axes is given by,

∴ I77 = Izz + Iyy

Fig.5.4 Perpendicular axis theorem

Proof

Consider three mutually perpendicular axes OX, OY and OZ. 
Consider
a small lamina of area da having co–ordinates as x and y along OX and 

OY. Let  r be the distance of the lamina form Z–Z axis.

From the geometry of the figure, r2 = x2 + y2

The moment of inertia of the lamina about X–X axis is given by,

Ixx  = da. y2

Similarly,   Iyy  = da. x2

Iss = da. r2 = da (x2 + y2
)

= da. x2  + da. y2  = Ixx + Iyy∴ I77 = Izz + Iyy
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5.8 Derivation of moment of inertia of some sections

1) Rectangular section

Fig.5.5 M.I of rectangular section

Consider a rectangular section of width b and depth d as shown

in the fig.5.5. Now consider an elemental strip of thickness dy parallel

to X–X axis and at a distance y from X–X axis.

Area of the strip = b. dy

M I of the strip about X–X axis = Area × (Distance)2

= b. dy. y2  = by2dy

M. I of the whole section about X–X axis,

xx

+d
2

d

3 +d

J [ 3 ]  
d

−2

−2

I =
by2dy = b  y

2 = b
⎣

d

d 

3

3
8 + 8
3

3

⎦

d3

d3

2d3

= b [24 + 24] = b [ 24 ]

bd3
Izz = 12

;

Similarly,

db3
Iyy = 12

Unit – III 5.6



2) Circular section

3

Fig.5.6 M.I of circular section

Consider a circle of radius r with centre O and X–X and Y–Y be the  

two axes of reference passing through O.

Now consider an elementary ring of radius x and thickness dx.

∴ The area of the ring, da  =  2 л x. dx

Moment of inertia of the ring about Z–Z axis

= Area ×(Distance)2 = 2 л x. d x . x2 = 2лx3dx

The moment of inertia of whole section about Z–Z axis
r

0
4 4

Iss = J 2лx dx = [ ] = =
2лx4   r 2лr4

лr4

2
d

Substituting , r =

0

л(d/2)4

лd4

=
2

32

2 ,

Iss =
From the geometry of the section, I

xx 
= 

I
yy

.  According to perpendicular axis 

theorem,

Iss = Ixx + Iyy = 2 Ixx or 2 IyyI
77

Izz = Iyy = 2 =

v(d4/32)

vd4

=
2

64
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3) Triangular section

Fig.5.7 M.I of triangular section

Consider a triangular section ABC of base b and height ℎ.

Consider an elemental strip DE of thickness dy at a distance of y

from the vertex A as shown in the fig.5.7.

From the figure, the triangle ADE and ABC are 
similar.

∴ DE = 
y  

BC ℎ
DE  = BC.

=

y

by
ℎ

ℎ

ℎ

ℎ

Area of the strip,   da = by dy
ℎ

Moment of inertia of the strip about the base 
BC

2

= Area× (Distance)
by by

= dy(ℎ − y)2 = (ℎ − y)2dy

BC

by
I =

(ℎ − 
y)2dy

Moment of inertia of the whole section about the base 
BC,

ℎ

I BC
= b y(ℎ2 + y2 − 2ℎy)dy

J 
ℎ

0
ℎ

I BC
= b

ℎ
J (yℎ2 + y3 − 2ℎy2)dy

ℎ
J

0
ℎ

0

b
=

ℎ
[   2

y2ℎ2

y4

+

−  4
3 ]

0

2ℎy3 ℎ
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b ℎ4

ℎ4

=

+

−
ℎ

[ 2

4

2ℎ4

3 ]

=
ℎ [
b 6ℎ4 + 3ℎ4 − 8ℎ4

]

=

=

12

bℎ4

bℎ3
12 ℎ

12
bh3

∴ IBC = 12

The moment of inertia of a triangular section about the axis  

passing through it centre of gravity.

In a triangular section, the distance of C.G from the base is given by,

1ℎ = ℎ
3

According to the parallel axis theorem,

1IBC = IG + aℎ 2

1IG = IBC − aℎ 2

bℎ3

bℎ

= − 
( ) (   )  12 2

3

ℎ 2

=
bℎ3 bℎ3

3bℎ3 − 2bℎ3

bℎ3

= −
=

12 18
36
36

bh3
∴ IG = 36

5.9 Polar moment of inertia

The moment of inertia of a plane area with respect to the 

centroidal  axis perpendicular to the plane area is called polar moment 

of inertia.

Mathematically, IP  or J = Ixx + Iyy

Unit – III 5.9

For a circular 
section,

J = v d4  

32

5.10 Radius of gyration

Radius of gyration may be defined as the distance at which the

whole area of the plane figure is assumed to be concentrated with respect

to a reference axis.



Fig.5.8 Radius of gyration

Consider a plane figure of area A. Divide the whole area into

number of vertical strips as shown in the fig.5.8. Let a1, a2, a3, etc. be

the area of the strips and r1, r2, r3, …, etc. be the distance of these areas
from a given axis AB.

The moment of inertia of the area about the reference axis AB, IAB = Σar2

Let us assume that the vertical strips be arranged at the same

distance K from the axis AB so that the moment of inertia about the

axis AB remains unchanged. Now the moment of inertia of the plane

figure about the axis AB,

IAB = a1K2 + a2K2 + a3K2 + ⋯ = K2Σa = AK2
AB∴ I = 

AK2 (or)

I
ABK = { A

Where, K is radius of gyration of the plane figure about the axis AB.

5.11 Section modulus

The section modulus or modulus of section is the ratio between 

the  moment of inertia of the figure about its centroidal axis and the 

distance of

extreme surface from the centroidal axis. It is usually denoted by Z.

∴ Z = Moment of inertia about 

centroidal axis Distance of extreme surface 

from centroidal axis
Section modulus of rectangle, 
Z

IG= =
×
=

bd3

2

bd2

d/2
1

2 d
6

Section modulus of circle, 
Z

IG= =
×
=

лd4

2

vd3

d/2 64
d
32Unit – III 5.10



Shape Figure Area X̅ Y ̅

Rectangle bd
b  

2

d  

2

Circle
vd2  

4

d  

2

d  

2

Triangle
bh  

2

b  

3

h  

3

Triangle
bh  

2

Intersectio
n  of 
medians

h  

3

Trapezium
(a + b)h  

2

(a2 + b2 + ab)  

3(a + b)

(2a + b)h  

3(a + b)

Trapezium
(a + b)h  

2
b  

2

(2a + b)h  

3(a + b)

POINTS TO REMEMBER

1) Position of centroid of plane geometrical figures
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2) Moment of inertia of plane geometrical figures

Shape Figure

M.I about  

centroidal axis

(IG )

M.I about  

base  

(IBC)

Rectangle bd3  
IG = 12

bd3

IBC =  3

Circle vd4  
IG = 64

vd4

J =
32

Triangle bh3  
IG = 36

bh3  
IBC = 12

Semi circle
vd4

d4  IG = 24 − 18v

vd4  

IBC = 128

3) X̅ = a1z1 + a2z2 + a3z3 + ⋯

a1 + a2 + a3 + ⋯

Y̅ = a1y1 + a2y2 + a3y3 + ⋯

(mm
)

4)
a1 + a2 + a3 + ⋯

(mm
)

(mm4)

(mm4)

7) Radius of gyration, K =

5) Parallel axis theorem, IAB = IG + ah2

6) Perpendicular axis theorem, I77 = Izz + Iyy

I
{A

(mm
)
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Determine the centroid of an angle section 100mm × 80mm ×
20mm thick with its longer arm being placed vertical.

Fig.P5.1 Centroid of ‘L’ section [Example 5.1]

Solution :
Split the section into two rectangles as 

shown.  Let, AB and BC be the reference axes

Let X̅  and Y ̅  be the distance of C.G from AB and BC respectively.

1 1 12 2
a   = 80 × 20 = 1600 mm2;  x  = 80 = 40 mm; y = 20 = 10 mm

2 2 22 2
a = 20 × 80 = 1600 mm2;  x  = 20 = 10 mm; y = 20 + 80 = 60 mm

X̅ = 
a

1
x

1  
+ a

2
x

2  = (1600 × 40) + (1600 × 10) = 80000 =
a1 + a2 1600 + 1600 3200

25 mm

Y ̅ = 
a

1
y

1 
+ a

2
y

2 = (1600 × 10) + (1600 × 60) = 112000 =
a1 + a2 1600 + 1600 3200

35 mm

Result :  The coordinate of centroid from reference 
axes

X̅ = 25 mm and Y̅ = 35 mm
Example : 5.2

Find the centroid of the section shown in the fig.P5.2

SOLVED PROBLEMS

DETERMINATION OF CENTROID

Example : 5.1

Unit – III P5.1



Fig.P5.2 Centroid of ‘L’ section [Example 5.2]

Solution :

a1 = 25 × 100 = 2500 mm2; a2 = 100 × 25 = 2500 mm2

1 12 2
x   = 25 = 12.5 mm;  y   = 25 + 100 = 75 mm

2 22 2
x  = 100 = 50 mm; y = 25 = 12.5 mm

X̅ = 
a

1
x

1 
+ a

2
x

2 = (2500 × 12.5) + (2500 × 50) = 156250 =
a1 + a2 2500 + 2500 5000

31. 25 

mm
Y ̅ = 

a
1
y

1 
+ a

2
y

2 = (2500 × 75) + (2500 × 12.5) = 218750 
=

a1 + a2 2500 + 2500 5000

43. 75 

mm
Result : X̅  = 31. 25 mm and Y̅  = 43. 75 mm from reference 
axes

Example : 5.3 (Apr.14)

Find the centroid of a T–section with flange 100mm × 30mm 
and  web 120mm × 30mm.

Solution :

This section is symmetrical about Y–Y axis. So the C.G will lie on this 

axis

2
∴ X̅ = 100 = 50 mm

a1 = 100 × 30 = 3000 mm2; a2 = 30 × 120 = 3600 mm2

1 22 2
y   = 30 = 15 mm;  y   = 30 + 120 = 90 mm

Y ̅ = 
a

1
y

1 
+ a

2
y

2 = (3000 × 15) + (3600 × 90) = 369000 
=

a1 + a2 3000 + 3600 6600

55. 91 

mm
Unit – III P5.2



Fig.P5.3 Centroid of ‘T’ section [Example 5.3]

Result : X̅  = 50 mm and Y̅  = 55. 91 mm from reference 
axes
Example : 5.4 (Apr.04, Oct.12)

Find the centroid of an inverted T–section with flange  
150mmx20mm and web 100mm × 25mm.

Fig.P5.4 Centroid of inverted ‘T’ section [Example 5.4]

Solution :

This section is symmetrical about Y–Y axis. So the C.G will lie on this 

axis

2
∴ X̅ = 150 = 75 mm

a1 = 25 × 100 = 2500 mm2; a2 = 150 × 20 = 3000 mm2

1 22 2
y   = 20 + 100 = 70 mm;  y   = 20 = 10 mm

Unit – III P5.3



Y ̅ = 
a

1
y

1 
+ a

2
y

2 = (2500 × 70) + (3000 × 10) = 205000 
=

a1 + a2 2500 + 3000 5500

37. 273 

mm
Result : X̅  = 75 mm and Y̅  = 37. 273 mm from reference 
axes
Example : 5.5

A channel section of size 100mm × 50mm overall. The base as
well as the flanges of the channel are 15mm thick. Determine the
centroid for the section.

Fig.P5.5 Centroid of channel section [Example 5.5]

Solution :

This section is symmetrical about X–X axis. So the C.G will lie on this 

axis
2

∴ Y ̅  = 100 = 50 mm

a1=50×15=750 mm2; a2=70×15=1050 mm2; a3=50×15=750 mm2

1 2 32 2 2
x  = 50 = 25 mm; x  = 15 = 7.5 mm; x  = 50 = 25 mm

X̅ = 
a

1
x

1 
+ a

2
x

2 
+ a

3
x

3 = (750 × 25) + (1050 × 7.5) + (750 × 25)  

a1  + a2  + a3 750 + 1050 + 750

= 45375 =
2550

17. 794 mm

Result : X̅  = 17. 794 mm and Y̅  = 50 mm from reference 
axes

Example : 5.6 (Oct.14)

Find the centroid of an I–section having top flange 150mm ×
25mm, web 160mm × 25mm and bottom flange 200mm × 25mm.
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Fig.P5.6 Centroid of ‘I’ section [Example 5.6]

Solution :

This section is symmetrical about Y–Y axis. So the C.G will lie on this 

axis
2

∴ X̅ = 200 = 100 mm

1 1 2
a   = 150 × 25 = 3750 mm2;   y   = 25 + 160 + 25 = 197.5 mm

2 2 2
a   = 25 × 160 = 4000 mm2;   y   = 25 + 160 = 105 mm

3 3 2
a   = 200 × 25 = 5000 mm2;   y   = 25 = 12.5 mm

Y ̅ = 
a

1
y

1 
+ a

2
y

2 
+ a

3
y

3 = 
(3750×197.5)+(4000×105)+(5000×12.5)  a1 + a2 + a3

3750+4000+5000= 1223125 =
12750

95. 931 mm

Result : X̅  = 100 mm and Y̅  = 95. 931 mm from reference 
axes

DETERMINATION MOMENT OF INERTIA

Example : 5.7 (Oct.01)

Determine the polar moment of inertia of rectangle 100mm 
×150mm.

Solution :

Moment of inertia of rectangular section about X–X 
axis,

Ixx = 12 =
bd3

1
00 × 1503

12
= 28125000 
mm

4
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Fig.P5.7 M.I of rectangular section [Example 5.7]

Moment of inertia of rectangular section about Y–Y 
axis,

Iyy = 12 =
db3

1
50 × 1003

12
= 12500000 
mm

4

Polar moment of inertia,

Iss  = Ixx + Iyy  = 28125000 + 12500000 = 40625000 
mm4

Result : The polar moment of inertia, I77 = 40625000 
mm4

Example : 5.8 (Apr.01)

Determine the polar moment of inertia of a circle of diameter 
100mm.

Fig.P5.8 M.I of circular section [Example 5.8]
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Solution :

Diameter of the circle, d = 100 mm

Moment of inertia of circular section about X–X or Y–Y 
axis,Ixx = Iyy = 64 =

лd4

л × 1004
64

= 4908738.521 
mm

4

Polar moment of 
inertia,Iss  = Ixx  + Iyy  = 4908738.521 + 4908738.521 = 9817477. 042 

mm4

Result : The polar moment of inertia, I77 = 9817477. 042 
mm4

Example : 5.9 (Apr.03, Oct.16)

An angle section is of 100 mm wide and 120 mm deep overall.
Both the flanges of the angle are 10 mm thick. Determine the moment of
inertia about the centroidal axes X-X and Y-Y. Also find its radius of
gyration about its centroidal axes.

Solution :

Fig.P5.9 M.I of ‘L’ section [Example 5.9]

Split the section into two rectangles as shown.

1 1 12 2
a  = 100 × 10 = 1000 mm2; x  = 100 = 50 mm; y = 10 = 5 mm

2 2 22 2
a   = 10 × 110 = 1100 mm2; x   = 10 = 5 mm; y   = 10 + 110 = 65 mm

X¯ = 
a

1
x

1 
+ a

2
x

2 = (1000 × 50) + (1100 × 5) = 55500 = 26.43 mm
a1 + a2 1000 + 1100 2100

Y ̅ = 
a

1
y

1 
+ a

2
y

2 = (1000 × 5) + (1100 × 65) = 76500 = 36.43 mm
a1 + a2 1000 + 1100 2100
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Calculation for Izz

Distance of C.G of section (1) from X–X axis,

ℎy1  = Y ̅  − y1  = 36.43 − 5 = 31.43 mm

Distance of C.G of section (2) from X–X axis,

ℎy2  = Y ̅  − y2  = 36.43 − 65 = −28.57 mm

Moment of inertia of section (1) about an axis parallel to X–X and passing  

through its C.G (G1),

I
Gx1 

= 1b1d 3 100 × 103

12

12

= = 8333.333 
mm4

Moment of inertia of section (2) about an axis parallel to X–X and passing  

through its C.G (G2),

I
Gx2 

= 2b2d 3 10 × 1103

12

12

= = 1109166.667 
mm4

According to parallel axis theorem,

the moment of inertia of section (1) about X–X axis,

y1Ixx1 = IGx1 + a1ℎ2 = 8333.333 + [1000 × 31.432] = 996178.233 mm4

Similarly,

y2Ixx2 = IGx2 + a2ℎ2  = 1109166.667 + [1100 × (−28.57)2] = 2007036.057 
mm4

Moment of inertia of the whole section about X–X axis,

Ixx = Ixx1 + Ixx2 = 996178.233 + 2007036.057 = 3003214.29

= 3. 0032 × 106  

mm4

Calculation for Iyy

Distance of C.G of section (1) from Y–Y axis,

ℎx1 = X̅ − x1 = 26.43 − 50 = −23.57 mm

Distance of C.G of section (2) from Y–Y axis,

ℎx2 = X̅ − x2 = 26.43 − 5 = 21.43 mm

Moment of inertia of section (1) about an axis parallel to Y–Y and passing  

through its C.G(G1),

I
Gy1 

=
d1b 3 3

1    = 
10 × 100

12

12

= 833333.333 
mm4

Moment of inertia of section (2) about an axis parallel to Y–Y and passing  

through its C.G(G2),

I
Gy2 

=
d2b 3 3

2    = 
110 × 10

12

12

= 9166.667 mm4

Unit – III P5.8



According to parallel axis theorem,

the moment of inertia of section (1) about Y–Y axis,
I
yy1 

= I
Gy1 

+ a
1
ℎ2

x1 = 833333.333 + [1000 × (−23.57)2
] = 1388878.233 

mm4I
yy2 

= I
Gy2 

+ a
2
ℎ2

x2 = 9166.667 + [1100 × 21.432
] = 514336.057 

mm4

Moment of inertia of the whole section about Y–Y axis,

Iyy  = Iyy1  + Iyy2  = 1388878.233 + 514336.057 = 1903214.29

= 1. 9032 × 106  

mm4
Calculation for Kzz

Radius of gyration about centroidal axis X-
X,

xxK

=

{ Σa

I
xx =

{
3003214.29 =

2100
37. 817 mm

Calculation for Kyy

Radius of gyration about centroidal axis Y-
Y,

yyK

=

{{Σa
21

00

Iyy

19032
14.29

= =

30. 105 mm

Result : 1) The moment of inertia about centroidal axes,

Izz = 2. 088 × 106 mm4; Iyy = 1. 2974 × 106 mm4

2) The radius of gyration about centroidal axes,

Kzz  = 37. 817 mm ; Kyy  = 30. 105 mm

Example : 5.10 (Oct.03, Oct.04, Apr.13, Apr.18)

Find the values of Izz and Iyy of a T–section 120mm wide and

120mm deep overall. Both the web and flange are 10mm thick. Also  

calculate Kzz and Kyy.

Solution :

This section is symmetrical about Y–Y axis. So the C.G will lie on this 

axis. ∴ X̅ = 120 = 60 mm
2

a1 = 120 × 10 = 100 mm2; a2 = 10 × 110 = 1100 mm2

1 22 2
y   = 10 = 5 mm;   y   = 10 + 110 = 65 mm

Y ̅ = 
a

1
y

1 
+ a

2
y

2 = (1200 × 5) + (1100 × 65) = 77500 = 33.696 
mm

a1 + a2 1200 + 1100 2300

Unit – III P5.9



Fig.P5.10 M.I of ‘T’ section [Example 5.10]

Calculation for Izz

ℎy1  = Y ̅  − y1  = 33.696 − 5 = 28.696 mm

ℎy2  = Y ̅  − y2  = 33.696 − 65 = −31.304 mm

I
Gx1 

= 1b1d 3

12
=

120 × 103
= 10000 mm4

I
Gx2 

= 2b2d 3

12

10 × 1103

12

12

= = 1109166.667 
mm4

Ixx1 = IGx1 + a1ℎ2 = 10000 + [1200 × (28.696)2
] = 998152.5 mm4

y2

y1

I
xx2 

= I
Gx2 

+ a
2
ℎ2

= 1109166.667 + [1100 × (−31.304)2
] = 2187101.125 

mm4

Ixx = Ixx1 + Ixx2 = 998152.5 + 2187101.125 = 3. 185 × 106mm4

Calculation for Iyy

ℎx1  = X̅ − x1  = 60 − 60 = 0  

ℎx2  = X̅ − x2  = 60 − 60 = 0

I
Gy1 

= 1d1b 3

12
=

10 × 1203
= 144000 mm4

I
Gy2 

= 2d2b 3

12
=

12

110 × 103

12
= 9166.667 mm4

I
yy1 

= I
Gy1 

+ a
1
ℎ2

x1I
yy2 

= I
Gy2 

+ a
2
ℎ2

x2

= 144000 + 0= 1440000 mm4

= 9166.667 + 0 = 9166.667 mm4

Unit – III P5.10



Iyy  = Iyy1  + Iyy2  = 1440000 + 9166.667 =

Calculation for radius of gyration

1. 449 × 106  mm4

xxK

=

{{ Σa
230

0

I
xx =

3.185 
× 106 

=
37. 213 mm

yyK

=

{{Σa
23

00

Iyy 1.449 
× 106

= =
25. 1 mm

Result : 1)  Izz  = 3. 185 × 106mm4 2) Iyy  = 1. 449 × 106  mm4

3) Kzz  = 37. 213 mm 4) Kyy  = 25. 1 mm

Example : 5.11 (Apr.90)

Calculate Izz and Iyy  for the section shown in the fig.P5.11.

Also find Kzz and Kyy.

Fig.P5.11 M.I of ‘T’ section [Example 5.11]

Solution :

1 1 12 2
a  = 140 × 30 = 4200 mm2; x  = 140 = 70 mm; y = 30 = 15 mm

2 2 22 2
a  = 50×90=4500 mm2; x  = 30+ 50 =55 mm; y = 30+ 90 =75 mm

X¯ = 
a

1
x

1 
+ a

2
x

2 = (4200 × 70) + (4500 × 55) = 5415100 = 64.241 mm
a1 + a2 4200 + 4500 8700

Y ̅ = 
a

1
y

1 
+ a

2
y

2 = (4200 × 15) + (4500 × 75) = 400500 = 46.034 mm
a1 + a2 4200 + 4500 8700

Unit – III P5.11



Calculation for Izz

ℎy1  = Y ̅  − y1  = 46.034 − 15 = 31.034 mm

ℎy2  = Y ̅  − y2  = 46.034 − 75 = −28.966 mm

I
Gx1 

= 1b1d 3

12
=

140 × 303
= 315000 mm4

I
Gx2 

= 2b2d 3

12
=

12

50 × 903

12
= 3.0375 × 106  mm4

y1
I
xx1 

= I
Gx1 

+ a
1
ℎ2

= 315000 +[4200×(31.034)2
]=4360058.455 

mm4
y2

I
xx2 

= I
Gx2 

+ a
2
ℎ2

= 3.0375 × 106+[4500×(-28.966)2
]=6813131.202 

mm4
Ixx = Ixx1 + Ixx2 = 4360058.455 + 6813131.202 = 11. 173 × 106mm4

Calculation for Iyy

ℎx1 = X̅ − x1 = 62.241 − 70 = −7.759 mm

ℎx2  = X̅ − x2  = 62.241 − 55 = 7.241 mm

I
Gy1 

= 1d1b 3

12
=

30 × 1403
= 6.86 × 106mm4

I
Gy2 

= 2d2b 3

12
=

12

90 × 503

12
= 937500 mm4

x1
I
yy1 

= I
Gy1 

+ a
1
ℎ2

x2
I
yy2 

= I
Gy2 

+ a
2
ℎ2

= 6.86×106 +[4200×(-7.759)2
]=7112848.74 mm4

= 937500 + [4500×(7.241)2
] = 1173444.365 

mm4

Iyy  = Iyy1  + Iyy2  = 7112848.74 + 1173444.365 = 8. 2863 × 106  

mm4

Calculation for radius of gyration

xxK

=

{{ Σa
870

0

I
xx =

11.173 
× 106 

=
35. 836 mm

yyK

=

I
yy

= {{Σa
870

0

8.2863 × 106  
=

Unit – III P5.12

30. 862 mm

Result : 1) Izz  = 11. 173 × 106mm42) Iyy  = 8. 2863 × 106  mm4

3) Kzz  = 35. 836 mm 4)  Kyy  = 30. 862 mm



Example : 5.12 (Apr.05, Oct.12)

A channel section is of size 300mm×100mm overall. The base as

well as the flanges of the channel are 10mm thick. Determine the values  

of Izz and Iyy. A.lso find Kzz and Kyy.

Fig.P5.12  M.I of channel section [Example 5.12]

Solution :

This section is symmetrical about X–X axis. So the C.G will lie on this 

axis ∴ Y ̅  = 300 = 150 mm
2

a1 = a3 = 100 × 10 = 1000 mm2; a2 = 10 × 280 = 2800 mm2

1 3
2

2 2
x   = x   = 100 = 50 mm; x   = 10 = 5 mm

X¯ = a1x1 + a2x2 + a3x3

480
0

a1 + a2 + a3
(1000 × 50) + (2800 × 5) + (1000 × 50) 114000

= = = 23.75 mm
1000 + 2800 + 1000

Calculation for Izz

ℎy1  = Y ̅  − y1  = 150 − 5 = 145 mm

ℎy2  = Y ̅  − y2  = 150 − 10 + 280
(

2 )

= 0 mm

y3

3

(ℎ = Y ̅  − y   = 150 −    10 + 280 + 10

= −145 mm
I
Gx1 

= I
Gx3 

= 1b1d 3

12
=

100 × 103

12

2 )

= 8333.333 mm4

Unit – III P5.13



I
Gx2 

= 2b2d 3 10 × 2803

12

12

= = 18.2933 × 106  

mm4

y1Ixx1 = IGx1 + a1ℎ2 = 83333.333 +[1000×(145)2
]=21.0333×106 mm4

y2Ixx2 = IGx2 + a2ℎ2 = 18.2933 × 106+[2800×(0)2
]=18.2933×106 mm4

y3Ixx3 = IGx3 + a3ℎ2 = 83333.333+[1000×(145)2
]=21.0333×106 mm4

60. 36 ×
106mm4

I
xx 

= I
xx1 

+ I
xx2 

+ I
xx3

= 21.033 × 106  + 18.2933 × 106  + 21.0333 ×

106  =

Calculation for Iyy

ℎx1 = X̅ − x1 = 23.75 − 50 = −26.25 mm  

ℎx2 = X̅ − x2 = 23.75 − 5 = 18.75 mm  ℎx3 

= X̅ − x3 = 23.75 − 50 = −26.25 mm

I
Gy1 

= I
Gy3 

= 1d1b 3

12
=

10 × 1003

12
= 0.8333 × 106mm4

I
Gy2 

= 2d2b 3 280 × 103

12

12

= = 23.333 × 103  

mm4
I
yy1 

= I
Gy1 

+ a
1
ℎ2

x1

I
yy2 

= I
Gy2 

+ a
2
ℎ2

x2

= 0.8333×106 +[1000×(-26.25)2
]=1.5224 × 106 

mm4

= 23.333×103 + [2800×(18.75)2
] =1.0077×106 

mm4Iyy3  = Iyy1  = 1.5224 × 106mm4

I
yy 

= I
yy1 

+ I
yy2 

+ I
yy3

=1.5224×106+1.0077×106 +1.5224×106=

Calculation for radius of gyration

4.0525×106 mm4

xxK

=

{{ Σa
48

00

I
xx  =

60.36 
× 106  

=
112. 138 mm

yyK

=

I
yy

= {{Σa
480

0

4.0525×106 
= 29. 056 mm

Result :  1) Izz = 60. 36 × 106 mm4 2) Iyy = 4.0525 ×106 mm4

3) Kzz =112.138 mm 4) Kyy = 29.056 mm

Example : 5.13

Find the moment of inertia of the section shown in the fig.P5.13 

about  the horizontal centroidal axis. Also find the radius of gyration 

about that axis.
Unit – III P5.14



Fig.P5.13  M.I of channel section [Example 5.13]

Solution :

a1 = a2 = 15 × (80 − 15) = 975 mm2; a3 = 80 × 15 = 1200 mm2

1 2
3

2 2
y   = y   = 15 + 65 = 47.5 mm; y   = 15 =7. 5 mm

a1 + a2 + a3

Y ̅ = 
a

1
y

1  
+ a

2
y

2  
+ a

3
y

3  = (975 × 47.5) + (1200 × 7.5) + (975 ×
47.5) 975 + 1200 + 

975

= 101625 = 32.262 mm
3150Calculation for Izz

ℎy1  = ℎy2  = Y ̅  − y1  = 32.262 − 47.5 = −15.238 mm

ℎy3  = Y ̅  − y3  = 32.262 − 7.5 = 24.762 mm

I
Gx1 

= I
Gx2 

= 1b1d 3

12
=

15 × 653

12
= 343281.25 mm4

b3d 3

123 
IGx3 =

=

80 × 153

12
= 22500 mm4

y1
I
xx1 

= I
Gx1 

+ a
1
ℎ2

= 343281.25 +  [975  × (– 15.238)2
]=569672.978 

mm4  Ixx2 = Ixx1 = 569672.978 mm4

y3Ixx3 = IGx3 + a3ℎ2 = 22500+[1200×(24.762)2
]=1758287.973 mm4

I
xx 

= I
xx1 

+ I
xx2 

+ I
xx3

= 569672.978 + 1758287.973 + 569672.978 

=
1. 8976 × 106 

mm4

xxRadius of gyration, K
=

{{ Σa
315

0

I
xx  =

18.976 
× 106  

=
25. 544 mm

Result : 1) Izz= 1. 8976 × 106 mm4 2) Kzz = 24.544 mm

Unit – III P5.15



Example : 5.14 (Apr.02, Oct.13)

Determine the moment of inertia about centroidal co–ordinate

axes of an I–section having equal flanges 120mm × 20mm size and web  

120mm × 20mm thick. Also find Kzz and Kyy.

Fig.P5.14 M.I of ‘I’ section [Example 5.14]

Solution :

This section is symmetrical about X–X and Y-Y axis.

2 2
∴ X̅  = 120 = 60 mm; Y ̅  = 160 = 80 
mm

a1  = a3  = 120 × 20 = 2400 mm2; a2  = 20 × 120 = 2400 mm2

1 2
3
1

22 2
x   = x   = x   = 60 mm; y   = 20 = 10 mm;   y   = 20 + 120 = 
80 mm;

3 2
y = 20 + 120 + 20 = 150 mm; Σa = 2400 + 2400 + 2400 = 7200 mm2

Calculation for Izz

ℎy1  = Y ̅  − y1  = 80 − 10 = 70 mm

ℎy2  = Y ̅  − y2  = 80 − 80 = 0 mm

ℎy3  = Y ̅  − y3  = 80 − 150 = −70 mm

I
Gx1 

= I
Gx3 

= 1b1d 3

12
=

120 × 203

12
= 80000 mm4

I
Gx2 

= 2b2d 3 20 × 1203

12

12

= = 2.88 × 106 

mm4

y1Ixx1 = IGx1 + a1ℎ2 = 80000 + [2400 × (70)2
]=11.84×106mm4

Unit – III P5.16



y2Ixx2 = IGx2 + a2ℎ2  = 2.88 × 106 + [2400 × 02
] = 2.88 × 106 mm4

y3Ixx3 = IGx3 + a3ℎ2 = 80000 + [2400 × (−70)2
]=11.84×106mm4

I
xx 

= I
xx1 

+ I
xx2 

+ I
xx3

= 11.84 × 106  + 2.88 × 106  + 11.84  × 106  

=

Calculation for Iyy

26. 56 × 106 

mm4

ℎx1  = ℎx2  = ℎx3  = X̅ − x1  = 60 − 60 = 0 mm

I
Gy1 

= I
Gy3 

= 1d1b 3

12
=

20 × 1203

12
= 2.88 × 106mm4

I
Gy2 

=
d2b 3

=
2

120 × 20312

12

= 80000 mm4

x1
I
yy1 

= I
yy3 

= I
Gy1 

+ a
1
ℎ2 = 2.88 × 106 + 0 = 2.88 × 106 mm4

x2
I
yy2 

= I
Gy2 

+ a
2
ℎ2 = 80000 + 0 = 80000 mm4

I
yy 

= I
yy1 

+ I
yy2 

+ I
yy3

= 2.88 × 106  + 80000 + 2.88 × 106  = 5. 84 × 106  mm4

Calculation for radius of gyration

xxK

=

{{ Σa
720

0

I
xx =

26.56 
× 106 

=
60. 736 mm

yyK

=

{{Σa
72

00

Iyy 5.84 
× 106

= =
28. 480 mm

Result : 1) Izz  = 26. 56  × 106 mm4     2) Iyy  = 5. 84 × 106  mm4

3) Kzz = 60.736 mm 3) Kyy = 28.480 mm

Example : 5.15 (Apr.04, Apr.15, Oct.17)

An I–section has the top flange 100mm × 15mm, web 150mm ×

20mm and the bottom flange 180mm × 30mm. Calculate Izz and Iyy of  

the section. Also find Kzz and Kyy of the section.

Solution :

Unit – III P5.17

This section is symmetrical about Y-Y axis.

∴ X̅ = 180 = 90 mm
2

1 1 2
a   = 180 × 30 = 5400 mm2;    y   = 30 = 15 mm

2 2 2
a   = 20 × 150 = 3000 mm2;    y   = 30 + 150 = 105 mm

3 3 2
a   = 100 × 15 = 1500 mm2;    y   = 30 + 150 + 15 = 187.5 mm



Fig.P5.15 M.I. of ‘I’ section [Example 5.15]

Y ̅ = a1y1  + a2y2  + a3y3

a1 + a2 + a3

=
(5400 × 15) + (3000 × 105) + (1500 ×
187.5) 5400 + 3000 + 

1500= 677250 = 68.41 mm
9900

Calculation forIzz

ℎy1  = Y ̅  − y1  = 68.41 − 15 = 53.41 mm

ℎy2  = Y ̅  − y2  = 68.41 − 105 = −36.59 mm

ℎy3  = Y ̅  − y3  = 68.41 − 187.5 = −119.09 mm

I
Gx1 

= 1b1d 3

12
=

180 × 303

12
= 0.405 × 106  mm4

I
Gx2 

= 2b2d 3

12
=

20 × 1503

12
= 5.625 × 106 mm4

b3d 3

3 I
Gx3 

=

=

100 × 153

12

12

= 28125 mm4

y1Ixx1 = IGx1 + a1ℎ2 = 0.405×106+[5400×(53.41)2
]=15.809×106 mm4

y2Ixx2 = IGx2 + a2ℎ2  = 5.625 × 106+[3000×(−36.59)2
]=9.6415 × 106 mm4

y3Ixx3 = IGx3 + a3ℎ2 = 28125+[1500×(−119.09)2
]=21.302 × 106 mm4

Unit – III P5.18



I
xx 

= I
xx1 

+ I
xx2 

+ I
xx3

= 15.809 × 106 + 9.6415 × 106 + 21.302 × 106 =

Calculation for Iyy

46. 7525 ×
106mm4

ℎx1  = ℎx2  = ℎx3  = X̅ − x1  = 90 − 90 = 0 mm

I
Gy1 

= I
Gy3 

= 1d1b 3

12
=

30 × 1803

12
= 14.58 × 106mm4

I
Gy2 

= 2d2b 3

12
=

150 × 203
= 0.1 × 106 mm4

I Gy3

d3b 3

12
=

3 =

12

15 × 1003

12
= 1.25 × 106 mm4

x1
I
yy1 

= I
Gy1 

+ a
1
ℎ2

x2
I
yy2 

= I
Gy2 

+ a
2
ℎ2

x3
I
yy3 

= I
Gy3 

+ a
3
ℎ2

= 14.58 × 106 + 0 = 14.58 × 106 mm4

= 0.1 × 106 + 0 = 0.1 × 106 mm4

= 1.25 × 106 + 0 = 1.25 × 106 mm4

I
yy 

= I
yy1 

+ I
yy2 

+ I
yy2

= 14.58 × 106 + 0.1 × 106 + 1.25 × 106 =

Calculation for radius of gyration

15. 93 × 106  

mm4

xxK

=

{{ Σa 9900

I
xx  =

46.7525 
× 106  

=
68. 72 mm

yyK

=

{{Σa
99

00

Iyy 15.93 
× 106

= =

Unit – III P5.19

40. 119 mm

Result : 1) Izz  = 46. 7525 × 106mm4 2) Iyy  = 15. 85 
× 106  mm4

3) Kzz = 68.72 mm 4) Kyy = 40.119 mm

Example : 5.16 (Oct.01)

A rectangular hole of breadth 60mm and depth 100mm is made  

at the centre of rectangular plate of breadth 120mm and depth 200mm.

Determine the moment of inertia of the hollow plate about its centroidal  

axis. Also find Kzz and Kyy.

Solution :

a1 = 120 × 200 = 24000 mm2; a2 = 60 × 100 = 6000 mm2;  

Σa = a1  − a2  = 24000 − 6000 = 18000 mm2



Fig.P5.16  M.I. of hollow rectangular section [Example 5.16]

Calculation for Izz

Moment of inertia of outer rectangle about X-X axis,

I
xx1 

= 1b1d 3 120 × 2003

12

12

= = 80 × 106  

mm4
Moment of inertia of inner rectangle about X-X 
axis,

I
xx2 

= 2b2d 3 60 × 1003

12

12

= = 5 × 106  

mm4
Moment of inertia of the whole section about X–X 
axis, Ixx  = Ixx1 − Ixx2  = 80 × 106 − 5 × 106  =

Calculation for Iyy

75 × 106  mm4

Moment of inertia of outer rectangle about Y–Y 
axis,

I
yy1 

=
d1b 3 3

1    = 
200 × 120

12

12

= 28.8 × 106mm4

Moment of inertia of inner rectangle about Y–Y 
axis,

I
yy2 

=
d2b 3 3

2    = 
100 × 60

12

12

= 1.8 × 106 mm4

Moment of inertia of the whole section about Y–Y 
axis, Iyy = Iyy1 − Iyy2 = 28.8 × 106 − 1.8 × 106 =

Calculation for radius of gyration

27 × 106  mm4

xxK

=

I
xx  =

75 ×
106  

={ Σa { 

18000

64. 55 mm

Unit – III P5.20



yyK

=

Iyy 27 ×
106

{Σa = { 18000 =

38. 73 mm

Result : 1) Izz  = 75 × 106  mm4 2) Iyy  = 27 × 106  mm4

3) Kzz = 64.55 mm ; 4) Kyy = 38.73 mm

,

Unit – III P5.21



Unit - III

Chapter 6. THIN CYLINDERS AND 

THIN SPHERICAL SHELLS

1. Introduction

Some engineering components like pipes, steam boilers, liquid

storage tanks and compressed air reservoirs have greater strength by

virtue of

their curved shape more than the material by which they are made.

These are called shells. Generally the walls of such shells are very thin

and compared to their diameter. Shells having cylindrical and spherical

shapes are widely

used. Whenever a shell is subjected to an internal pressure, its walls are

subjected to tensile stresses. The shell wall will behave as a membrane

in which the stresses are tangential to the middle surface of the wall

uniformly

distributed across its thickness.

1. Comparison of thin and thick cylindrical shells.

Unit – III 6.1

Thin cylindrical shell Thick cylindrical shell

1) The thickness of this cylindrical

shell is less than 1/10 to 1/15

times of its diameter.

The thickness of this

cylindrical shell is greater

than 1/15 times of its

diameter.

2) The normal stresses are assumed

to be uniformly distributed

throughout the wall thickness

The normal stresses  

uniformly 

distributed.

are not

3) Longitudina

l  

distributed

stress is uniformly Longitudinal

stre

ss  uniformly 

distributed.

is not

4) The radial stress induced is very  

small and is neglected.

A finite value of radial stress is  

induced.
6.3 Assumptions made in design of thin cylindrical shells

The following assumptions are made while designing  

cylindrical shells.

1) The normal stress distribution over a cross section is uniform.

2) Radial stress is small and hence neglected.

thi
n

3) Loading is assumed to be uniform by neglecting the self weight of 

the  shell.



4) Cylindrical shell is assumed to be subjected to an internal pressure 

above  the atmospheric pressure.

5) Degradation of wall due to corrosion and chemical reaction of 

contents  is neglected.

6.4 Failure of thin cylindrical shell due to internal pressure

Whenever a thin cylindrical shell is subjected to an internal

pressure, its walls are subjected to tensile stresses. If the tensile

stresses exceed the permissible limit, the cylinder may fail in any one

of the following two ways.

Fig.6.1 Failure of thin cylindrical shell

1) It may split up into two troughs

2) It may split up into two cylinders.

5. Stress in cylindrical shell due to internal pressure

Whenever a thin cylindrical shell is subjected to an internal 

pressure,  its walls will be subjected to the following two types of 

tensile stresses.

1) Circumferential stress or hoop stress

2) Longitudinal stress

1) Circumferential stress or hoop stress

Consider a thin cylindrical shell subjected to an internal 
pressure as
shown in the fig.6.2. As a result of this pressure, the cylinder may split 

up in  to two troughs.

Let, l = Length of the shell

d = Diameter of the shell
Unit – III 6.2



t = Thickness of the 
shell

p = Intensity of 
internal pressure and

ƒ1 = Circumferential 
stress induced in the shell

Fig.6.2 Circumferential stress or hoop stress

Let us consider a longitudinal section through the diameter of the 
shell.

Total force normal to this section

= Intensity of pressure × Projected area

= p × (d × l) = pdl

Resisting force offered by this section

= Circumferential stress × Area of the resisting section

= ƒ1(2tl) = 2ƒ1tl

Resisting force offered by the section = Total force normal to the section

pd l = 2ƒ1tl
ƒ1 = 2tl =

pdl

p

d  

2t

2) Longitudinal stress

Fig.6.3 Longitudinal stress

Unit – III 6.3



Consider a thin cylindrical shell subjected to an internal

pressure as shown in the fig.6.3. As a result of this pressure, the

cylinder may split up in to two pieces.

Let, l = Length of the shell

d = Diameter of the shell

t = Thickness of the shell

p = Intensity of internal pressure and
ƒ2 = Longitudinal stress 

induced in the shell  Let us consider a normal 

section at equilibrium.

The bursting force acts on one end of the shell

= Intensity of pressure× Area
= p × л d2

4

Resisting force offered by this section

= Longitudinal stress x Area of the resisting section

= ƒ2(лdt)

Resisting force offered by the section = Bursting force acts on one endл
ƒ2(лdt) = p × 4 d

2

p × v d2

ƒ2 =

4

=

pd = 
ƒ
1  

4t

2

v d t

6.6. Maximum shear stress
Letƒ1 and ƒ2 be the circumferential stress and longitudinal stress 

acting  at any point on its circumference of a thin cylindrical shell.

The maximum shear 
stress,

ƒs =
ƒ 1 − ƒ2

2
=

pd − pd 
2t

4t

2

pd
=

8t

6.7 Changes in dimensions of a thin cylindrical shell due  

to an internal pressure
Consider a thin shell subjected to an internal 
pressure.

Unit – III 6.4

Let,

ƒ1  =

Circumferential or hoop stress which acts in the 

direction  perpendicular to the axis of the cylinder.

ƒ2  =  Longitudinal stress which acts in the direction of length.

e1 =  Circumferential strain

e2 =  Volumetric strain

Y   =  Volume of cylindrical shell

1/m =  Poisson’s ratio



6d  =  Change in diameter of the shell 
and

6l   =  Change in length of the shell

m
We know that, circumferential strain, e   = 1 ƒ − 1 ƒ1 E ( 

1 2)
= 1

E ( 1
ƒ − 1 ƒ1

m  2 ) ( 2

ƒ1
∵ ƒ =

2 )

1

ƒ1
e =

E (
1 − 1

2m)

1
Also circumferential strain, e   = 

6d

d

1
∴ Change in diameter, 6d = e × d = 

ƒ1

E (
1 − 1

2m) × d

m
Longitudinal strain, e   = 1 ƒ − 1 ƒ2 E ( 

2 1)
= 1

E ( 2

m

ƒ1 − 1 ƒ 1)

2

ƒ1
e = E (2

1 −  1

m)

2
Also, longitudinal strain, e   = 

6l

l

2∴ Change in length, 6l = e × l =
ƒ1

E (2

1 −  1

m) × l

4
Volume of the cylindrical shell, Y  = v d2l

Taking log on both 
sides, log Y  = log v + log d2  + log l

4

log Y  = log v + 2 log d + log l
4

Taking differential on both 
sides,

Y d
l

6Y = 0 + 2 6d + 6l = 2e   + e1

22 ƒ1
=

E (
1 − 1 ƒ1

+2m)

E (2

1 −  1

m)

ƒ1
=

E (

Unit – III 6.5

1

1

2 −  1 +    −
m

2

m)



ƒ1
= E (2

5 −  2

m)

ƒ1
6Y = E (2

5 −  2

m) Y

Change in 
volume,

ƒ1

E (

m)

6Y  = 2. 5 −  
2 Y

6.8 Thin spherical shells

Consider a thin spherical shell subjected to an internal 

pressure as  shown in the fig.6.4

Let, p  = Intensity of internal pressure

d  = Internal diameter of the spherical shell

t  = Thickness of the spherical shell
As a result of this internal pressure, the shell is likely to be torn 

away  along the centre of the sphere.

Fig.6.4 Thin spherical shell

Let us consider a section X-X through the centre of the 
shell.

The bursting force acting along X-X,F = Intensity of internal pressure × Projected area = p × v d2

4
Let ƒ1 be the tensile stress induced in the shell at the section X-

X.

Resisting force = Tensile stress x Resisting area = ƒ1 × v d t

But, resisting force = Bursting force
1 4

ƒ × vdt = p × v d2

pd
ƒ1 = 4t
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pdThe tensile stress induced in Y-Y axis, ƒ2 = ƒ1 = 4t

If η is the efficiency of the riveted joint of the spherical shell, 
then

Stress, ƒ  =
pd  

4t

η

6.9 Change in diameter and volume of thin spherical shell  

subjected to an internal pressure
Consider a thin spherical shell subjected to an internal pressure 
as

shown in the fig.4.4

Let, p = Intensity of internal pressure

d = Internal diameter of the spherical shell

t = Thickness of the spherical shell

pd

1/m = Poisson’s ratio

The tensile stress induced in any direction due to the internal 
pressure,

ƒ1 = ƒ2 = ƒ = 4t
1

2

The strain in any direction, e = e = e = 
ƒ1

E (

m)

4tE (
1 −  1 =  pd    1 −  1

m)

Change in 
diameter,

pd2 1
6d  = e × d  = 1 −  4tE (

m)

6
Original volume of the shell, Y  = v d3

Taking log on both sides,
log Y  = log v + log d3  = log v + 3 log d

6 6

Taking differential on both sides,

1Y d
4tE (

6Y = 0 + 3 6d = 3e   = 3 × pd 1 −  1
m)

4tE ( m)
Change in volume,   6Y  = 3 × pd 1 −  1    Y

pd3 1
v

=    ×
1 −

×

d  4
tE (
m)

6

3

Change in 
volume,

vpd4

6Y =
8tE (

1 −  1

m)
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Example : 

6.1

(Apr.01, Apr.15, Apr.17)

A 2boiler 2.8m diameter is subjected to a steam pressure of
0.68N/mm . Find the hoop stress and longitudinal stresses, if the
thickness of the boiler plate is 10mm.
Given : Diameter of boiler, d = 2.8 m = 2800 

mm  Internal pressure, p = 0.68 N/mm2

Thickness of the cylinder, t = 10 mm

To find : Hoop stress, ƒ1 2) Longitudinal 
stress, ƒ2

Solution :Hoop stress, ƒ1 = 2 t =
p d

0.68 × 2800
2 × 10

=   95. 2 
N/mm

2

2

2

Longitudinal stress, ƒ2  = ƒ1  = 95.2 =   47. 6 N/mm2

Result : 1) Hoop stress, ƒ1  = 95.2 N/mm2

2) Longitudinal stress, ƒ2  = 47.6 

N/mm

2

Example : 6.2

A water pipe 1.5m diameter a2nd 15mm wall thickness is
subjected to an internal pressure of 1.5N/mm . Calculate the
circumferential and longitudinal stress induced in the pipe.

Given :  Diameter of pipe, d = 1.5 m = 1500mm

Wall thickness, t = 15 mm

Internal pressure, p = 1.5 N/mm2

To find : 1) Circumferential stress, ƒ1 2) Longitudinal 
stress, ƒ2

Solution :

2 t

2 × 15

Circumferential stress, ƒ
1 

= p d = 1.5 × 1500 = 75 N/mm2

2

2

Longitudinal stress, ƒ2  = ƒ1  = 75 =   37. 5 N/mm2

Result : 1) Circumferential stress, ƒ1  = 75 

N/mm2

2) Longitudinal stress, ƒ2  = 37.5 N/mm2

SOLVED PROBLEMS

DETERMINATION OF HOOP STRESS AND LONGITUDINAL 

STRESS

Unit – III P6.1



Example : 

6.3

(Apr.04)

A boiler 3m internal diameter is subjected to a boiler pressure
of 5bar. Find the hoop and longitudinal stresses, if the thickness of the
boiler plate is 14mm.

Given : Diameter of boiler, d = 3 m = 3000 mm  

Thickness of plate, t = 10 mm

Steam pressure, p = 5 bar= 5× 105 N/m2 = 0.5 N/mm2

To find : 1) Hoop stress, ƒ1 2) Longitudinal stress, ƒ2

Solution :

Hoop stress, ƒ1 = 2 t =
p d

0.5 × 3000
2 × 10

= 75 N/mm2

2

2

Longitudinal stress, ƒ2  = ƒ1  = 75 =   37. 5 N/mm2

Result : 1) Hoop stress, ƒ1  = 75 N/mm2

2) Longitudinal stress, ƒ2  = 37.5 

N/mm

2

Example : 

6.4

(Oct.97, Apr.93, Oct.04)

A gas cylinder of internal diameter 1.5m is 30mm thick. Find the
allowable pressure of the gas ins2ide the cylinder if the permissible
tensile stress is not to exceed 150N/mm .
Given : Internal diameter of gas cylinder, d = 1.5m = 1500 mm  

Thickness of the gas cylinder, t = 30 mm
Permissible tensile stress = 150 
N/mm

2

To find : 1) Allowable pressure of gas inside the cylinder, 

p

Solution :
Assume the given tensile stress as hooppdstress.

We know that, hoop stress, ƒ1 = 2 t  

150 = p × 1500

150
0

p = 1
25×0 3×02 × 30 

=   6
N/m

m

2

Result : Allowable pressure of gas inside the cylinder, p = 6 

N/mm2

Example : 

6.5

(Oct.03)

A thin cylin2drical shell of 1m diameter is subjected to an
internal pressure of 1N/mm . Find the suitable thickness2 of the shell, if
the tensile stress in the material is not to exceed 100N/mm .

Unit – III P6.2



Given : Diameter of the cylindrical shell, d = 1m = 1000 mm

Internal pressure, p = 1 N/mm2

Allowable stress = 100 N/mm2

To find : The thickness of the shell, t

Solution :

,, Assume the given tensile stress as hpoodp stress.

We know that, hoop stress, ƒ1 = 2 t  
100 = 1 × 1000

2 × t

t = 1 × 1000 =   5 mm
2 × 100

Result : The thickness of the shell, t = 5mm

Example : 

6.6

(Oct.03)

A thin cylind2rical shell of 2m diameter is subjected to an 
internal  pressure of 1.5N/mm . Find out the suitable thickness of the 
shell, if the 2ultimate tensile strength of the plate is 500N/mm  . Use a factor of 
safety of 4.
Given : Diameter of cylinder, d = 2m = 2000 mm  

Internal pressure, p = 1.5 N/mm2

Ultimate stress = 100 N/mm2

Factor of safety = 4

To find : 1) The thickness of the shell, t

Solution :
,,

Ultimate stress 500
Working stress = Factor of safety =  4 = 125 N/mm 2

,,
Assume the given tensile stress as hoop 
stress.

Hoop stress, ƒ1 = p d
2 t

125 = 1.5 × 2000

2 × t

t = 1.5 × 2000 = 12 mm
2 × 125

Result : 1) The thickness of the shell, t = 12 

mm
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Example : 

6.7

(Apr.92)

A water main 500mm diameter contains w3 ater at a pressure
head of 100mm. The weight of the water is 10KN/mm . Fin2d the
thickness of the metal required if the permissible stress is 25 N/mm .
Given : Diameter of water main, d = 500 mm

Pressure head, ℎ =   100 m = 100 × 103  

mm  Permissible stress, ƒ1 = 25 N/mm2

109
Weight of  water, r =  10 KN/mm3  = 10 × 103 N/mm3

To find : 1) The thickness of the metal, 
t

Solution :
,,

Internal pressure of water, p = r ×
ℎ

109

= 10 × 103  × 100 × 103  = 1
N/mm2

Let the permissible stree be the hoop 
stress p d

Hoop stress, ƒ1 = 2 t

25 = 1 × 500

2 × t

2 × 25
t = 1 × 500 =   10 mm

Result :  1) The thickness of the metal required, t = 10 

mm
Example : 

6.8

(Oct.97, Oct.01, Apr.05, Apr.18)

A long steel tube 70mm internal diameter and wall thicknes2s
2.5mm has closed ends and subjected to an internal pressure of
10N/mm . Calculate the magnitude of hoop stress and longitudinal
stresses set up in the tube. If the efficiency of the longitudinal joint is
80%, state the stress which is affected and what is its revised value.

Unit – III P6.4

Given :  Diameter of the steel tube, d = 70 mm

Wall thickness, t = 2.5 mm  

Internal pressure, p = 

10N/mm2

Efficiency of the joint, η   =   80 % = 0.8

To find :  1) Hoop stress, ƒ1 2) Longitudinal 
stress, ƒ2

Solution :
1 2 t

2 × 2.5

Hoop stress, ƒ   = p d = 10 × 70 = 140 N/mm2



Longitudinal stress, ƒ2 = ƒ1 = 140 = 70 N/mm2

2 2

The hoop is affected by the longitudinal joint.

When the efficiency is 
0.8,

2 t η 2 
× 2.5 × 0.8

Revised value of hoop stress, ƒ1 =
p d = 10 × 70 = 175 N/mm

2

Result :  1)Hoop stress, ƒ1=140 N/mm2 2)Longitudinal stress, ƒ2=70 
N/mm2

3) Revised value of hoop stress when the 

effic2iency of  longitudinal joint is 80%, ƒ1  = 

175 N/mm

DETERMINATION OF CHANGE IN DIMENSIONS OF THIN  

CYLINDRICAL SHELLS
Example : 

6.9

(Oct.03, Oct.13, Oct.17)

A cylindrical shell 3m long and 500 mm in diameter is made up
of 20 mm thick plat2e. If the cylindrical shell is subjected to an internal
pressure of 5N/mm , find the Result :ing hoop stress, longitudinal stress,

5

2

changes in diameter, length and volume. Take E = 2 × 10 N/mm and  
Poisson’s ratio = 0.3.

Given : Length of cylinder, l = 3m = 3000 mm  

Internal diameter, d = 500 mm

Metal thickness, t = 20 mm  

Internal pressure, p = 5 

N/mm2

Young’s modulus, E = 2 × 105 N/mm2

Poisson’s ratio, 1/m = 0.3

To find :  1) Hoop stress, ƒ1 2) Longitudinal stress, ƒ2

3) Change in diameter, ðd 4) Change in 
length, ðl

5) Change in volume, ðV

Solution :

4

л

л
4

Volume of the shell, V = d l = ×500 
×3000=589.0486×10 mm

2 2 6
3

2 t

2 × 20

Circumferential stress, ƒ
1 

= p d = 5 × 500 = 62. 5 N/mm2

2

2

The longitudinal stress, ƒ2 = ƒ1 = 62.5 = 31. 25 N/mm2

1

Unit – III P6.5

E

1

1
m

Circumferential strain, e   = ƒ   −
ƒ

1

2

[

]



=
1

2 × 10
5 [62.5 − 0.3 × 31.25] =   2. 65625 × 10

−4

2
1

E [
1

m
Longitudinal strain, e   = ƒ   
− ƒ

2

1

]

=
1

2 × 105 
[31.25 − 0.3 × 62.5] =   6. 25 × 10−5

Change in diameter, ðd  = e1  × d  = 2.65625 × 10−4 × 500 =   0. 1328 mm

Change in length, ðl = e2 × l = 6.25 × 10−5 × 3000 = 0. 1875 mm

Change in volume, ðV = (2e1 + e2) × V

= (2 × 2.65625 × 10−4 + 6.25 × 10−5
) × 589.0486 × 106

=   349. 748 × 103  mm3

Result :   1) Hoop stress, ƒ1= 62.5 N/mm2

2) Longitudinal stress, ƒ2  = 31.25 

N/mm

2

3) Change in diameter, 6d = 0.1328 mm

4) Change in length, 6l = 0.1875 mm

5) Change in volume, 6Y  = 349. 748 × 103  

mm3

Example : 

6.10

(Apr. 04, Oct.12, Apr.17)

Calculate the increase in volume of a boiler 3m long an2d 1.5m
diameter, when subjected to an internal pressure of 2N/mm . The
thickness2 is such that the ma5ximum2 tensile stress is not to exceed
30N/mm . Take E = 2. 1 × 10 N/mm and 1/m = 0.28. Also calculate the
changes in diameter and length.
Given : Length of the boiler shell, l = 3m = 3000 

mm  Diameter of the boiler shell, d = 1.5 m = 

1500 mm

Internal pressure, p = 2 N/mm2

Maximum tensile stress, ƒ1  = 30 N/mm2

Young’s modulus, E = 2.1 × 105 N/mm2

Poisson’s ratio, 1/m = 0.28To find :   1) Increase in volume, ðV

3) Change in length, ðl

Solution :

2) Change in diameter, 
ðd

ƒ1 30

Unit – III P6.6

Longitudinal stress, ƒ2 = 2 = 2 = 15 N/mm 2

4
Volume of the shell, V = л × d2l



4
= л × 15002 × 3000 = 5.3014 × 109  mm3

ƒ 1 1

E

m

[

]

Increase in volume, ðV  = 2.5 − 2 ×
× V

=

30
2.1 × 105

9[2.5 − 2 × 0.28] × 5.3014 × 10   = 1. 469 × 10   
mm

6

3

E

1

1
m1

2

[

]

Change in diameter, ðd  = ƒ   −
× ƒ × d

=
1

2.1 × 10
5 [30 − 0.28 × 15] × 1500 =   0. 1843 
mm

1

E

1

m2

1

[

]

Change in length, ðl = ƒ   −
× ƒ × l

=
1

2.1 × 10
5 [15 − 0.28 × 30] × 3000 =   0. 0943 
mm

Result :   1) Increase in volume, 6Y    = 1. 469 × 106  mm3

2) Change in diameter, 6d = 0. 1843 mm

3) Change in length, 6l = 0. 0943 mm

THIN SPHERICAL SHELLS

Example : 6.11

A vessel in the shape of a thin spherical shell 2m in diameter
an2d 5mm thickness is completely filled with a fluid at a pressure of
0.1N/mm . Determine the stress induced in the shell material.

Given : Diameter of the shell, d = 2 m = 2000 mm  

Thickness of the shell, t = 5 mm

Intensity of pressure, p = 0.1 N/mm2

To find : 1) Tensile stress, ƒ

Solution :
Tensile stress, ƒ = 4t =

pd

0.1 × 2000
4 × 5

= 10 N/mm 2

Result :   Tensile stress, ƒ  = 10 N/mm2

Example : 6.12

A spherical v2essel of 3m diameter is subjected to an internal  
pressure of 1.5 N/mm . Find the thickness of the plate, if the maximum

2stress is not to exceed 90 N/mm . The efficiency of the joint is 75%.

Unit – III P6.7



Given :  Diameter of spherical shell, d = 3 m = 3000 mm

Internal pressure, p = 1.5 N/mm2

Tensile stress, ƒ = 90 N/mm2

Efficiency of the joint, η   =   75 % = 0.75

To find :  The thickness of the plate, t

Solution :
pd

We know that, tensile stress, ƒ = 4tη

90 = 1.5 × 3000

4 × t × 0.75

90 × 4 × 0.75
t = 1.5 × 3000  =   16. 667 mm

Result :   1) The thickness of the plate, t = 16.667 

mm

Example : 

6.13

(Oct.01, Oct.18)

Determine the change in diameter and change in volume of
spherical shell 2m2 in diameter and 12m5m thick2subjected to an
internal pressure of 2N/mm . Assume E = 2 × 10 N/mm and Poisson’s
ratio = 0.25.
Given : Diameter of spherical shell, d = 2 m = 2000 mm  

Thickness of the shell, t = 12 mm

Internal pressure, p = 2 N/mm2

Young’s modulus, E = 2 × 105 N/mm2

Poisson’s ratio, 1/m = 0.25

To find :  1) Change in diameter, ðd 2) Change in 
volume, ðV
Solution : л

л

Volume of shell, V = 6 × d = 6 × 2000 = 4.18879 × 10  mm3 3 9
3

ƒ1 1

pd

1

Strain in the spherical shell, e = E [1 − m] = 4tE [1 − m]

=
2 ×
20004 × 12 × 2 × 10

5 [1 − 0.25] = 3.125 × 10−4

−4Change in diameter, ðd  = e × d  = 3.125 × 10 × 2000 =   0. 625 
mm
Change in volume, ðV = 3e × V

= 3 × 3.125 × 10−4 × 4.18879 × 109  =   3. 927 × 106  mm3

Result : 1)   Change in diameter, 6d = 0.625 mm

2)    Change in volume, 6Y  = 3. 927 × 106  mm3
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Example : 

6.14

(Apr.01, Apr.13)

Determine the depth to which a spherical float 200mm
diameter and 6mm thickness have to be immersed in wate5r in ord2er
that its diameter is decreased by 0.05mm. As3sume E = 2 × 10 N/mm ,
1/m = 0.25 and weight of water = 9810 N/m .
Given : Diameter of float, d = 200 mm  

Thickness of float, t  = 6 mm

Change in diameter, ðd = 0.05 mm

Young’s modulus, E = 2 × 105 N/mm2

Poisson’s ratio, 1/m = 0.25

Weight of water, r = 9810 N/m3 = 9810 × 10−9 N/mm3

To find :  1) Depth to which float to be immersed, ℎ

SoCluhtaiognne:in diameter of spherical float,
2

ðd  =

1 −

pd

1
4tE

m

[

]0.05 =
p × 2002

4 × 6 × 2 × 105
[1 − 0.25]

2002
p = 0.05 × 4 × 6 × 2 × 105  

= 8 N/m
m

2

We know that, pressure, p = r × ℎ

ℎ = p =
8

r

9810 × 10

−9  =   815494. 394 
mm

Result : 1) Depth to which float to be immersed, h =815494.394 

mm

Unit – III P6.9

Example : 

6.15

(Apr.01, Oct.16)

A spherical shell of 1m internal diameter an6d 5m3m thick is
filled with a fluid until its volume increases by 0. 2 × 10 mm 5.
Calcu2late the pressure exerted by the fluid on the shell. Take E = 2 × 10
N/mm , 1/m =
0.3 for the material.
Given : Internal diameter of spherical shell = 1000 mm  

Thickness of spherical shell, t = 5 mm

Increase in volume ðV = 0.2 × 106mm3

Young’s modulus, E   =   E = 2 × 105N/mm2

Poisson’s ratio, 1/m = 0.3

To find :  1) Pressure exerted by the fluid, p



Solution :
л

л

Volume of shell, V = 6 × d = 6 × 1000 = 5.236 × 10  mm3 3
8
3

pd 1
Change in volume of spherical shell, ðV = 3 × 4tE [1 − m] × V

60.2 × 10 =
3 × p ×
10004 × 5 × 2 × 105

[1 − 0.3] × 5.236 × 108

2

p = 0.2 × 106 × 4 × 5 × 2 × 105 
= 0. 7276 N/mm2

3 × 1000 × 0.7 × 5.236 × 108

Result : 1) Pressure exerted by the fluid, p = 0.7276 N/mm2

boiler. 
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Unit – IV

Chapter 7. THEORY OF TORSION

1. Introduction

Power is generally transmitted through shafts. While

transmitting power, a turning force is applied in a vertical plane

perpendicular to the axis of the shaft. The product of this turning force

and distance of its application

from the centre of the shaft is known as torque, turning moment or

twisting moment. A shaft of a circular section is said to be in torsion

when it is subjected to torque.

1. Pure torsion

A circular shaft is said to be in a state of pure torsion when it is

subjected to pure torque and not accompanied by any other force such

as

bending or axial force. Due to this torsion, the state of stress at any

point in the cross–section is one of pure shear. The shearing stress thus

induced in the shaft produces a moment of resistance, equal and

opposite to the applied

torque.

1. Assumption made in theory of pure torsion

The following assumptions are made in the theory of pure 

torsion  which relates shear stress and the angle of twist to the applied 

torque.

1) The material of the shaft is uniform throughout.

2) The material of the shaft obeys Hooke’s law.

3) The shaft is of uniform circular section throughout.

4) The shaft is subjected to twisting couples whose planes are 

exactly  perpendicular to the longitudinal axis.

5) The twist along the shaft is uniform.

6) Stresses do not exceed the limit of proportionality.

7) All diameters which are straight before twist remain straight 

after  twist.

8) Normal cross–sections at the shaft, which were plane  and 

circular  before the twist, remain plane and circular after the 
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7.4 Derivation of torsion equation

a) To prove
f
s = 

C&

r

l

Fig.7.1 Shaft under pure torsion

Consider a shaft fixed at one end and subjected to a torque  at 

the  other end as shown in the fig.7.1.

Let, T = Torque

l  = Length of the shaft

r = Radius of circular shaft

l

As a result of the torque, every cross section of the shaft is

subjected to shear stresses. Let the line AB on the surface of the shaft

be deformed to AB’ and OB to OB’ as shown in the fig.

Let, ∠BAB’ = ø in degrees

∠BOB’ = & in radians

fs  = Shear stress induced in the surface

C  = Modulus of rigidity of the shaft material.

We know that,

Change in lengthShear strain   = = BB′  = tan ø = ø   ------- (1)
Original length  

Since φ is very small, tan ø = ø

We also know that, arc BB’ = r&

ø =
BB′ = r&

l

l

-------
(2)

If fs is the intensity of shear stress on the outermost layer, 
then

Shear stress fsModulus of rigidity, C  = =øShear 

strain
fs

ø =
C

-------
(3)

C

l

fs
Equating (2) and (3) ⇒ = 
r& (or)

f
s = 

C& 

r

lUnit – IV 7.2



Since &, C and l are constants, the intensity of stress at any 

section of  the shaft is proportional to the distance of the point from the 

axis of the shaft.

f1 f2 fs
i.e. =

= ⋯  =  r1

r2

r

b) To prove
T = C&

J

l

Fig.7.2 Shaft under pure torsion

Consider a shaft subjected to torque T as shown in the fig.7.2  

Consider an elemental area ‘da’ of thickness ‘dx’ at a distance ‘x ’

from the centre of the shaft.

Let, r = Radius of the shaft and

fs = Shear stress developed in the outermost layer of the shaft.

sShear stress at this section = f × x
r

Area of the elemental strip, da = 2лx × dx

Turning force on the elemental area = Shear stress ×
Area = f x × 2лx dx

r s

s r

= 2л × f (x2dx)

Turning moment (torque) of this element,

dT = Shear force × Distance of element from 
axis

=

f

s
(

)

2л
2

л
r

r

s
2

3

x dx  x = f x 
dx

Total torque can be found out by integrating the above 

equation  between ‘0’ and ‘r’.
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2лfs 3

r

0

2лfs

r

r

0

x4 r 2л r4

T = J x dx = [ 4 ] = r fs ×

4

2

16

s

s

T = л f r3 = л f d3

∵ r = d
(

2)s
f = 16T

лd3
---------
(1)

We know that, fs 
= 

C&

r l

Substituting the value of fs in equation 
(2)

--------
(2)

лd3 × d
2

l
⇒

32
л d4

16T  = C& T  = C&

l

T = C&

J

l

---------
(3)

32
Where, J = л d4 which is known as polar moment of inertia

Combining equation (2) and (3)  
⇒

T
= 

f
s = 

C& J

r

l

The above relation can be rewritten as 
⇒

T = fs ;  J

r

T = C&

J

l7.5 Strength of hollow shaft

Fig.7.3 Hollow circular shaft subjected to pure torsion

Consider a hollow shaft subjected to toque ‘T’ as shown in the

fig.7.3. Let r1 and r2 be the outside and inside radius of the hollow shaft

respectively. Let us consider an elemental area ‘da’ at distance ‘x ‘ from

the centre of the shaft and of thickness ‘dz’ as shown in the fig.

Unit – IV 7.4



= f

Area of the elemental strip, 𝑑𝑎 = 2𝜋𝑥.

𝑑𝑥

x

Shear stress at this section, f
x s r

1

r1

Turning force = Stress × Area = f x 2лx dx = fs 2лx2dxs r1

Turning moment (torque) of this element,

dT = Shear force × Distance of element from 
axis

r1 r1
s s= 2л f   x2dx . x = 2л f   x3dx

r
3T = J x dx 

=

Total torque can be found out by integrating the above 

equation  between r2 and r1 .
r1

2лfs
2л

fs
r2

r1

1

[ 4 ]
x

4  r
1

r2

=
2лfs

r 4

r 4

1 − 2
r

1     [ 4

4 ]

1

2лfs    (d1/2)4 − (d1/2)4

=
(d /2) [ 4 ]

= 1

2 

4лfs   
d 4 − d 4

d
1     [   4 × 16   ]

v
T =

fs

d 4 − d 41 2 
16 [

d
1

]7.6 Stress distribution in the shaft under pure torsion

Fig.7.4 Shear stress distribution
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The intensity of shear stress at any point in the cross–section of

a shaft subjected to pure torsion is proportional to its distance from the

centre. In other words, the shear intensity is zero at the axis of the shaft

and increases linearly to maximum of fs at the surface. The shear stress

at any point on the circumference is same. The intensity of shear stress

in hollow shaft is more or less uniform throughout the section.

7.7 Power transmitted by the shaft

Consider a rotating shaft which transmits power from one of its

ends to another.

Let, N = Speed of the shaft in rpm and

T = Average torque in KN–m

Work done per minute = Force × Distance

= T × 2л N = 2л N T

∴
Work done per second = 2л N T ( KN –m)

60

Power transmitted = Work done per second

P = 2vN T

60
(KW)

Z   = =

7.8 Polar modulus

The ratio between the polar moment of inertia of the cross–

section of the shaft and the maximum radius of the section is known as

polar modulus or polar section modulus. It is an important parameter,

generally used in the

design of shaft. It is denoted by Z.

Polar moment of inertia J
Maximum 
radius

r

Z  =

=

For a solid circular shaft, J = л d4 ;    r = d

32 2
л

d4  
3

J

2 v
d3

=

r

(d/2)

16

For a hollow circular shaft, J = 
л

(d 
4 

− d 
4
) ;1

2

1

d1
r =32 2

л (d 4 − d 4)

r1 (d1/2)
16 d1

1

2

Z = J = 32 1 2  = v  

(d 4 − d 4)
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7.9 Torsional strength
It is defined as the torque developed per unit maximum shear 
stress.

Torsional strength is also known as the efficiency of a shaft.
Torsional strength = T

fs

From the equation T = 
fs

J r
T = J = Z
fs r

Therefore, torsional strength may also be represented by the

section modulus. For a given material and weight, a hollow shaft

withstands larger value of torque when compared to that of solid shaft.

Because for a given cross–sectional area, hollow circular section has

larger section modulus when compared to that of solid circular section.

Unit – IV 7.7

=

7.10 Torsional rigidity or stiffness

Torsional rigidity or stiffness is defined as the torque required

to produce an unit angle of twist in a specified length of the shaft.

Torsional rigidity = T

&
From the equation T = C&

J l

T = CJ

& l

From the above equation it is evident that torsional rigidity or
stiffness is the product of modulus of rigidity and polar moment of

inertia over a unit length of the shaft. For a given cross–sectional area,

torsional rigidity of a hollow circular shaft is larger when compared to

that of solid circular shaft.

7.11 Comparison of hollow shaft and solid shaft

Let,   d = Diameter of the solid shaft

d1 = Outside diameter of the hollow shaft

d2 = Inside diameter of the hollow shaft

a) Comparison by strength consideration

Strength of the hollow shaft Section modulus of hollow shaft
Strength of the solid shaft Section modulus of solid 
shaft



=
16 d1

(
л    

4

d  − d1

2

4
)

=
d 4 − d 4( 1

2 )
лd3 d1 × d3

16
For a given cross–sectional area a hollow circular shaft has

larger value of section modulus when compared with that of a solid

circular shaft. So the hollow shaft has more strength than that of a solid

shaft.

b) Comparison by weight consideration

Let, l = Length of both the solid and hollow 
shaft

p = Density of both the material of solid and hollow shaft

As    = Cross–sectional area of the solid shaft

Aℎ = Cross–sectional area of the hollow shaft

Weight of the solid shaft, Ws = Density × Volume
s 4

= p × l × A   = p l  л d2

Weight of the hollow shaft, Wℎ = Density × Volume

4 1

2

= p × l × Aℎ = p l  л (d 2  − d 2)

Weight of the solid shaft

Weight of the hollow shaft
= 4

v
4

=

ρ l v d2
d2

1 2
1
2

ρ l (d 2 − d 2)
(d 2 − d 2)

Ws As

For a given material, length and torsional strength, the weight

of a hollow shaft is less than that of a solid shaft. When using hollow

shaft, the material requirement is considerably reduced.

Ws − Wh As − Ah
% Saving in material = × 100 = × 100

Unit – IV 7.8

7.12 Advantages of hollow shaft over solid shaft
The following are the advantages of hollow shaft over solid 
shaft.

1) A hollow shaft has greater torsional strength than a solid shaft 
of  same material.

2) A hollow shat has more stiffness than a solid shaft of same 
cross– sectional area.

3) The material required for hollow shaft is comparatively lesser 
than  the solid shaft for same strength.

4) Hollow shaft is lighter in weight than a solid shaft of equal 
strength.

5) The removal of core from large shafts increase their reliability.
6) The material in the hollow shaft is effectively utilized.
7) The shear stress induced in the hollow shaft is almost uniform  

throughout the section.



Example : 7.1 (Apr.01)

Calculate the torque in a solid circular shaft 120mm diameter, if  
the shear stress is not to exceed 80N/mm2.

Given : Diameter of shaft, d = 120 mm  

Maximum shear stress, fs = 80 N/mm2

To find : 1) Torque, T

Solution :

Torque in a solid circular 
shaft,

s16

16

T  =  л f   d3  =  л × 80 × 1203  = 27. 143 × 106  N-

mm
Result : 1) Torque in the shaft, T = 27. 143 × 106 N-

mm
Example : 7.2

A solid steel shaft is to transmit a torque of 10KN–m. If the 
shearing  stress is not to exceed 45N/mm2, find the minimum diameter 
of the shaft.

Given : Torque, T   =   10 KN–m = 10 × 106  N–mm  

Maximum shearing stress, fs = 45 N/mm2

To find :  1) Minimum diameter of shaft, d

Solution :

Torque in a solid circular shaft,
16 sT = л f d3

3d = =
16 × T 16 ×
10 × 106л × fs л ×
45

= 1.13177 × 106

d = 104 mm

Result : 1) Minimum diameter of the shaft, d = 104 mm

Example : 7.3

A hollow shaft of external and internal diameter of 80mm and
50mm is required to transmit torque from one end to the other. What is
the safe torque it can transmit, if the allowable shear stress is
45N/mm2?
Given : External diameter of the shaft, d1 = 80 mm  

Inter diameter of the shaft, d2 = 50 mm

Allowable shear stress, fs  = 45 N/mm2

SOLVED PROBLEMS
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To find :   1) Torque transmitted by the shaft, 
T

Solution :

Torque transmitted by the hollow circular 
shaft,

(d 4 − d 4)1
2 

T = × fs ×
=

×
л л × 45 804 − 
50416 d1 16

80
= 3. 834 × 106  N-

mm
Result :  1) Torque transmitted by the shaft, T  = 3. 834 × 106  N-

mm
Example : 7.4 (Oct.12, Apr.15, Apr.17)

Calculate the power transmitted by a shaft 100 mm diameter 
running  at 250 rpm, if the shear stress in the shaft material is not to 
exceed 75N/mm2.
Given : Diameter of the shaft, d = 100 

mm  Speed of the shaft, N = 250 

rpm

Maximum shear stress, fs  = 75 N/mm2

To find : 1) Power transmitted by the 
shaft, P

Solution :

Torque transmitted by the shaft,

Unit – IV P7.2

s16

16

T = л f d3 = л × 75 × 1003 = 14.726 × 106 N-mm = 14.726 KN-m

Power transmitted by the shaft,

P  = 2 л N  T = 2 × л × 250 × 14.726 =
60 60

385. 53 KW

Result : 1) The power transmitted by the shaft, P = 385.53 

KW

Example : 7.5 (Oct.13)

A hollow shaft of external and internal diameters as 100mm
and 40mm is transmitting power at 120 rpm. Find the power the shaft
can transmit, if the shearing stress is not to exceed 50N/mm2.

Given : External diameter of the shaft, d1 = 100 mm  

Inter diameter of the shaft, d2 = 40 mm

Speed of the shaft, N = 120 rpm  

Allowable shear stress, fs = 50 N/mm2

To find : 1) Power transmitted by the shaft, P



Solution :

Torque transmitted by the hollow circular 
shaft, (d 4 − d 4)1

2 
T = × fs ×

=

×
л л × 50 1004 − 
40416 d1 16

100
= 9.566 × 106 N-mm = 9.566 KN-m

Power which can be transmitted by the 
shaft,P  = 2 л N  T = 2 × л × 120 × 9.566 =

60 60
120. 21 KW

Result : 1) Power transmitted by the shaft, P = 120.21 

KW

Example : 7.6

A solid circular shaft of 100mm diameter is transmitting 120KW  
at 150 rpm. Find the intensity of shear stress in the shaft.

Given : Diameter of the shaft, d = 100 mm

Power transmitted, P = 120 KW

Speed of the shaft, N = 150 rpm

To find : 1) Intensity of shear stress, fs

Solution :

Power transmitted by the shaft,

P = 2 л N T

60

T = P × 60 = 120 × 60 = 7.639 KN-m = 7.639 × 106 N-mm
2 × л × N 2 × л × 150

Also, torque transmitted by the shaft,

16 sT = л f d3

fs = л × d3 =
16 × T 16 ×
7.639 × 106 л × 1003

= 38. 905 N/mm2

Result : 1) Intensity of shear stress, fs = 38.905 N/mm2

Example : 7.7 (Oct.17)

A hollow circular shaft of 25 mm outside diameter and 20 mm
inside diameter is subjected to a torque of 50 N-m. Find the shear stress
induced at the outside and inside layer of shaft.

Unit – IV P7.3



Given : Outside diameter, d1 = 25 mm  

Inside diameter, d2 = 20 mm

Torque transmitted, T = 50 N-m = 50 × 103 N-mm

To find : 1) Shear stress at outside 
layer, fs1

2) Shear stress at inside layer, fs2

Solution :

Polar moment of inertia,[
4
1

2

л

л
32

32

] [
]

J = d − d =
25 − 20 = 22641.556 

mm

4 4 4
4

sJ r
J

We know that, T = fs ⟹ f = T × r

1 2

2

d1
At the outside layer, r = r = = 25 = 12.5 
mm

T 50 
× 103fs1  = J  × r1  = 22641.556 × 12.5 = 27. 6 N/mm2

2 2

2

d2
At the inside layer, r = r = = 20 = 10 
mm

T 50 × 103

fs2  = J  × r2  = 22641.556 × 10 = 22. 08 N/mm2

Result : 1) Shear stress at outside layer, fs1 = 27. 6 N/mm2

2) Shear stress at inside layer, fs2 = 22. 08 N/mm2

Example : 7.8

A hollow shaft is to transmit 200KW at 80 rpm. If the stress is
not to exceed 60N/mm2 and internal diameter is 0.6 times of the
external diameter, find the diameter of the shaft.

Given : Power transmitted, P = 200 KW = 200× 106 N-mm/s  

Speed of the shaft, н = 80 rpm

Allowable shear stress, fs  = 60 N/mm2

Internal diameter, d2 = 0.6 × External diameter (d1)

To find :  1) External diameter, d1 2) 
Internal diameter, d2

Solution :

Torque transmitted by the hollow circular shaft,
T =

л 

1

6

1 2 
× fs ×

(d 4 − d 4)

d1

=
л × 60

16
× 1d 4 − (0.6d1)4

d1
1

Unit – IV P7.4

= 10.254 d 3 N-mm



Power transmitted by the 
shaft,

P =
2 л N T

60

2 л × 80 × 10.254 d3

60 1= 1 = 85.904 d 3

1200 × 106  = 85.904 d 3

3 200 × 106

85.90
4

= 2.328 × 106

132. 5 mm

d1 =

d1 = ;  d2 = 0.6 × d1 = 0.6 × 132.5 = 79. 5 mm

Result :  1) External diameter, d1 = 132.5 mm

2) The internal diameter, d2 = 79.5 

mm

Example : 7.9 (Apr.93)

A solid circular shaft has to transmit a power of 40KW at
120rpm. The permissible shear stress is 100N/mm2. Determine the
diameter of the shaft, if the maximum torque exceeds the mean torque
by 25%.
Given : Power transmitted, P  = 40 KW

Shear stress, fs  = 100 N/mm2

Maximum torque, Tmax = 1.25 × Mean torque = 1.25 Tmeaн

To find : 1) Diameter of shaft, d

Solution :

Power transmitted by the 
shaft,

2 л N Tmeaн
P =

60

mea
н

2 × л × N 2 × л ×
120

T = P × 60 = 40 × 60  = 3.183 KN-m = 3.183 × 106 N-
mm

Tmax = 1.25 × Tmeaн = 1.25 × 3.183 × 106 = 3.979 × 106 N-mm

Torque transmitted by the shaft,

16max

s

T

= л f d3
3d =

16 × Tmax

л × fs

=
16 × 3.979 × 106

л × 100
= 
202648.806

Unit – IV P7.5

d = 58. 737 mm

Result : 1) Diameter of shaft, d = 58.737 mm



Example : 7.10 (Oct.91, Oct.96)

Find the torque transmitted by (i) solid shaft of diameter 0.4m
(ii) hollow shaft of external diameter 0.4m and internal diameter 0.2m,
if the angle of twist is not to exceed 1° in a length of 10m. Take C =
0. 8 × 105N/mm2.

Given : Angle of twist, & = 1° = 1 × (π /180) = 0.01745 
rad.

Modulus of rigidity, C  = 0.8 × 105 N/mm2

Length of the shaft, l  = 10 m = 10000 mm

To find : 1) Torque transmitted, T

Solution :

(i) Solid shaft

Diameter of the shaft, d = 0.4 m = 400mm

Polar moment of inertia, J = л d4  = л × 4004 = 25.133 × 108 mm4  

32 32
Relation for troque transmitted by the 

shaft,  T = C&

J l

C& 0.8 × 105 × 0.01745 × 25.133 × 108

T = × J =
l 10000= 3.509 × 108 N-mm = 3.509 × 102 KN-m = 350. 9 KN-m

(ii) Hollow shaft

External diameter of the shaft, d1 = 0.4 m = 400mm  

Internal diameter of the shaft, d2 = 0.2 m = 200 mm

1

2

32
3

2

Polar moment of inertia, J = л (d 4 − d 4) = л (4004 − 2004)

= 23.562 × 108 mm4

Relation for troque transmitted by the 
shaft,  T = C&

J l

C& 0.8 × 105 × 0.01745 ×
23.562 × 108

T = × J =
l 10000

= 3.289 × 108 N-mm = 3.289 × 102 KN-m =

Unit – IV P7.6

328. 9 KN-m

Result : 1) Torque transmitted by solid shaft, T = 350.9 KN–m

2) Torque transmitted by hollow shaft, T = 328.9 KN–

m



Example : 7.11

Find the angle of twist per metre length of a hollow shaft of
100mm external diameter and 60mm internal diameter, if the shear
stress is not to exceed 35N/mm2. Take C = 85 × 103N/mm2.

Given : Length of the shaft, l = 1m = 

1000 mm  External diameter, d1  =  100 

mm  Internal diameter, d2 = 60 mm

Maximum shear stress, fs  = 35 N/mm2

Modulus of rigidity, C   =   85 ×
103N/mm2

To find : 1) Angle of twist, &

Solution :

Torque transmitted by the hollow circular shaft,(d 4 − d 4)1
2 

T = × fs ×
=

16 d1
16

л л × 35 1004 − 
604 10

0

× = 5.9816 × 106 N-
mm

1

2

32
3

2

Polar moment of inertia, J = л (d 4 − d 4) = л (1004 − 604)

= 8.545 × 106mm4

Relation for angle of twist,

T = C&

J l

& =

=

T l 5.9816 ×
106 × 1000C  J 85 × 103 ×
8.545 × 106= 8.235 × 10−3rad. = 8.235 × 10−3 × 180 =

л
0. 472°

Result : 1)   Angle of twist in the shaft, & = 

0.472°
Example : 7.12

A solid shaft of 120mm diameter is required to transmit 200KW
at 100 rpm. If the angle of twist is not to exceed 2°, find the length of
the shaft. Take C = 90 × 103N/mm2.

Given :

Unit – IV P7.7

Diameter of the shaft, d = 120 mm

Power transmitted, P = 200 KW

Speed of the shaft, N = 100 rpm

Angle of twist, & = 2° = 2 × (π /180) = 0.0349 rad.

Modulus of rigidity, C   =   90 × 103N/mm2



60

To find : 1) Length of shaft, l

Solution :

Power transmitted by the shaft, P  = 2 л N  T

T = P × 60 = 200 × 60 = 19.1 KN-m = 19.1 × 106 N-mm
2 × л × N 2 × л × 100

Polar moment of inertia, J = л d4 = л × 1204 = 20.358 × 106mm4  

32 32

Relation for length of the shaft,
T = C&

J

l
l =

C& × J 90 × 103  × 0.0349 ×
20.358 × 106

T 19.1 × 106

= = 3347. 878 

mm
Result : 1) Length of shaft, l = 3347.878 mm = 3.348 m

Example : 7.13 (Oct.04, Oct.13, Oct.18)

A solid shaft 20mm diameter transmits 10KW at 1200 rpm.
Calculate the maximum intensity of shear stress induced and the angle
of twist in degrees in a length of 1m, if modulus of rigidity for the
material of the shaft is 8 × 104N/mm2.

Given : Diameter of the shaft, d = 20 mm  

Power transmitted, P = 10 KW  

Speed of the shaft, N = 1200 rpm

Length of the shaft, l = 1 m = 1000 mm  

Modulus of rigidity, C   =    8 × 104N/mm2

To find :  1) Shear stress, fs 2) Angle of twist, 
&

Solution :

Power transmitted by the shaft,

P = 2 л N T

60

T  = P  × 60   = 10 × 60 2 

× л × N 2 

× л × 1200

= 79.577 × 10−3  KN-m = 79.577 × 103  N-mm16 sTorque transmitted by the shaft, T  =  л f   
d3

fs = л × d3 =
16 × T 16 ×
79.577 × 103 л × 203

=
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50. 66 
N/mm2



Polar moment of inertia, J = л d4  = л × 204 = 15.708 × 103mm4

32 32

Relation for angle of twist  ⟹
T = C&

J

l
& =

=

T  l 79.577 ×
103 × 1000C J 8 × 104 ×
15.708 × 103

= 0.0633 rad. = 0.0633 × 180 =
л

3. 628°

Result :  1) Shear stress induced, fs = 50.66 N/mm2

2)   Angle of twist, & = 3.628°

Example : 7.14 (Apr.04)

Calculate the power transmitted by a shaft of diameter 150mm
at 120 rpm, if the maximum shear stress is not to exceed 80N/mm2.
What will be the angle of twist in a length of 10m? Take C = 0. 84 ×
105N/mm2.
Given : Diameter of the shaft, d = 150 mm  

Speed of the shaft, N = 120 rpm

Maximum shear stress, fs  = 80 N/mm2

Length of the shaft, l = 10 m = 10000 mm  

Modulus of rigidity, C = 0.84 × 105N/mm2

To find :  1) Power transmitted, P2) Angle of twist, &

Solution :

Torque transmitted by the shaft,

s16

16

T = л f d3 = л × 80 × 1503 = 53.014 × 106 N-mm = 53.014 KN-m

60 60

Power transmitted by the shaft,

P  = 2 л N  T = 2 × л × 120 × 53.014 = 666. 194 KW

Polar moment of inertia, J = л d4  = л × 1504 = 49.7 × 106mm4

32 32

Relation for angle of twist  ⟹
T = C&

J

l
& =

=

T  l 53.014 × 106   

× 10000C J 0.84 × 105 ×
49.7 × 106

= 0.127 rad. = 0.127 × 180 =
л

Unit – IV P7.9

7. 276°

Result :  1) Power transmitted, P = 666.194 KW

2)   Angle of twist, & = 7. 276°



Example : 7.15 (Apr.04)

Find the maximum torque that can be applied to a shaft of

80mm diameter. The permissible angle of twist is 1.5° in a length of 5m

and shear stress not to exceed 42N/mm2. Take C = 84 × 103N/mm2.

Given :  Diameter of shaft, d = 80 mm

Angle of twist, & = 1.5° = 1.5 × (π /180) = 0.02618 rad.
Length of the shaft, l = 5 m = 5000 mm  

Maximum shear stress, fs = 42 N/mm2

Modulus of rigidity, C   =   84 × 103  N/mm2

To find : 1) Torque that can be applied, T

Solution :

(a) Torque based on shear stress.

1

s

16

16

T   =  л f   d3  =  л × 42 × 803  = 4. 222 × 106  N-

mm(b) Torque based on angle of twist
Polar moment of inertia, J = л d4 = л × 804 = 4.021 × 106mm4

32 32
T2

Relation for torque ⟹ = C&

=

J l

C  & × J 84 × 103 × 0.02618 × 4.021 
× 106l 5000

T2 =

=
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1. 769 × 106  N-mm

We shall apply the torque which is 
lesser.

i. e T  = T2  = 1. 769 × 106  N-mm
Result :   1)   Torque that can be applied, T = 1. 769 × 106  N-

mm
Example : 7.16 (Oct.89)

The external and internal diameters of a hollow shaft are
400mm and 200mm respectively. Find the maximum torque that can be
transmitted, if the angle of twist is not to exceed 0.5° in a length of 10m
and the shear stress is not to exceed 70N/mm2. Take C = 80 KN/mm2.

Given : External diameter, d1 = 400 mm  

Internal diameter, d2 = 200 mm

Angle of twist, & = 0.5o = 0.5 × (π /180) = 8.727× 10−3 rad.
Length of the shaft, l = 10 m = 10000 mm  

Maximum shear stress, fs    =   70 N/mm2

Modulus of rigidity, C   =   80 KN/mm2  = 80 × 103N/mm2



To find : 1) Maximum torque that can be 
transmitted, T

Solution :

(a) Torque based on shear stress(d 4 − d 4)1
2 

T1 = × fs ×
=

×
л л × 70 4004 − 
200416 d1 16

100= 8. 247 × 108  N-

mm(b) Torque based on angle of 
twist

1

2

32
3

2

Polar moment of  inertia, J  =  л (d 4  − d 4) =  л (4004 − 
2004)

= 2.3562 × 109  mm4

T2
Relation for torque ⟹ = C&

=

J l

C & × J 80 × 103  × 8.727 × 10−3 × 2.3562 
× 106l 10 × 103

T2 =

= 1. 645 × 108  N-mm

We shall apply the torque which is 
lesser.

i. e T  = T2  = 1. 645 × 108  N-mmResult :  1) Torque that can be transmitted, T = 1. 645 × 108 N-

mm
Example : 7.17 (Oct.03)

A solid shaft is subjected to a torque of 15KN–m. Find the
suitable diameter of the shaft, if the allowable shear stress is
60N/mm2. The allowable twist is 1° for every 20 diameters length of
the shaft. Take C = 80 KN/mm2.
Given : Torque, T   =   15 KN–m = 15 × 106  N–mm  

Angle of twist, & = 1o = 1 × (π /180) = 0.1745 rad.

Length of the shaft, l = 20 × diameter (d)  

Maximum shear stress, fs = 60 N/mm2

Modulus of rigidity, C  = 80 KN/mm2 = 80 × 103 N/mm2

To find : 1) Diameter of shaft, d

Solution :

(a) Diameter for strength

16 sTorque transmitted, T  =  л f  
d3

3d = =
16 × T 16 ×
15 × 106л × fs л ×
60

= 1.27324 × 10

Unit – IV P7.11

6

d = 108. 385 

mm
l



(b) Diameter for stiffness
Polar moment of  inertia, J  =  л d4  = 0.098175 
d4

32
Relation for diameter ⟹

T = C&

J

l
=

15 × 106 80 × 103 ×
0.017450.098175 d4 20 × d

152.788 × 106

d4
=

3d =

69.8

d

152.796 × 106

69.8
= 2.1889 × 106

d = 129. 84 mm

We shall provide a shaft of greater 
diameter.

i. e.  d  = 129. 84 mmResult :  1) Diameter of shaft, d = 129.84 mm

Example : 7.18 (Apr.01, Apr.15, Apr.17)

A solid shaft is transmitting 100 KW at 180 rpm. If the
allowable stress is 60N/mm2, find the necessary diameter for the shaft.
The shaft is not to twist more than 1° in a length of 3 m. Take C = 80
KN/mm2.
Given : Speed of the shaft, N = 180 rpm  

Power transmitted, P = 100 KW
Maximum shear stress, fs  = 60 N/mm2

Angle of twist, & = 1° = 1 × (π /180) = 0.01745 rad.
Length of the shaft, l  = 3 m = 3000 mm

Modulus of rigidity, C  = 80 KN/mm2 = 80 × 103 N/mm2

To find : 1) Diameter of shaft, d

Solution :
Power transmitted by the shaft, P  = 2 л N  T

60
T = P × 60 = 100 × 60 = 5.3052 KN-m = 5.3052 × 106 N-mm

2 л N 2 л × 180

(a) Diameter for strength

16 sTorque transmitted, T  =  л f  
d3

3d = =
16 × T 16 ×
5.3052 × 106л × fs л ×
60

= 
450319.36
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d  = 76. 65  mm  ≈ 77 mm



(b) Diameter for stiffness
Polar moment of  inertia, J  =  л
d4

32
Relation for diameter ⟹

T = C&

J

l
T × 32 = C &

лd4

l4d = =
T  × 32 × l 5.3052 × 106 × 32 ×
3000л × C × & л × 80 × 103  ×
0.01745

= 116.128 × 106

d  = 103. 809 mm ≈ 104 mm

We shall provide a shaft of greater 
diameter.

i. e.  d  = 104 mm
Result :  1) Diameter of shaft, d = 109.76 mm

Example : 7.19

A solid steel shaft of 60mm diameter is to be replaced by a
hollow steel shaft of the same material with internal diameter equal to
half of the external diameter. Find the diameters of the hollow shaft
and saving in material, if the maximum allowable shear stress is same
for both the shafts.
Given : Diameter of solid shaft, d = 60 mm

External diameter of hollow shaft, d1 = 0.5 × Internal diameter 
(d2)

To find : 1) Diameters of the hollow shaft, d1 and d2

2) Percent saving in material

Solution :

Torque transmitted by the solid shaft,
1

s

16

16

sT = л f d3  = л × f × 603 --------- (1)

Torque transmitted by the hollow 
shaft,

л 1
2 

T2 = × fs ×
=

16 d1
16

(d 4 − d 4) л × fs
d 

4 − (0.5d
1
)4
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× 1

d1
162

s

1T = л × f × 0.9375 d 3 --------- (2)

Power transmitted and allowable shear stress in both the cases are 

same
∴ T1 = T2

16
1

6

s s

1

л × f × 603 =  л × f × 0.9375 d 3



3 603
d1 = 0.9375 = 230400

1d = 61. 305 mm ; 2 2

2

d1
d = = 61.305 = 30. 653 mm

s 4

4

Area of the solid shaft, A  = л × d2 = л × 602 = 2827.433 mm2

Area of the hollow 
shaft,

ℎ

1

2

4 4
A  = л × (d 2 − d 2) = л × (61.3052 − 30.6532) = 2213.799 mm2

Saving in 
material, As − Aℎ

= × 100 = 2827.433 − 2213.799 ×
100 =

As 2827.433
21. 7 %

Result :  1) External diameter of hollow shaft, d1 = 61.305 mm

2) Internal diameter of hollow shaft, d2= 30.635 mm

3) Saving in material = 21.7 %

Example : 7.20 (Apr.13, Apr.14, Oct.16)

A hollow shaft having inner diameter 0.6 times the outer
diameter is to be replaced by a solid shaft of the same material to
transmit 550KW at 220 rpm. The permissible shear stress is 80N/mm2.
Calculate the diameters of the hollow and solid shafts. Also calculate
the percentage of saving in material.
Given : Power transmitted, P = 550 KW  

Speed of the shaft, N = 220 rpm

Shear stress, fs  = 80 N/mm2

To find : 1) Diameter of solid shaft, d

2) Diameters of hollow shaft, d1 and d2

3) Percentage saving in material

Solution :
Power transmitted by the shaft, P  = 2 л N  T

60
T = P × 60 = 550 × 60 = 23.873 KN-m = 23.873 × 106 N-mm

2 л N2 л × 220

(a) Solid shaft

16 sTorque transmitted, T  =  л f  
d3

3d = =
16 × T 16 ×
23.873 × 106л × fs л ×
80

= 
1519802.383
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d = 114. 973 

mm



(b) Hollow shaft

Torque transmitted by the hollow 
shaft,

л (d 4 − d 4)

d1

1
2 

T = × fs ×
=

л × 80

16

d 4 − (0.6d1)4

× 1

d1
1

16

23.873 × 106  = 13.672 d 3

123.873 × 106  = 13.672 d 3

3 23.873 × 106

13.67
2

= 
1746123.464

d1 =

d1 = 120. 418 

mmd2 = 0.6 × d1 = 0.6 × 120.418 = 72. 251 mm

s 4

4

Area of  the solid shaft, A   = л × d2  = л × 114.9732  = 10382 mm2

Area of the hollow 
shaft,

ℎ

1

2

4 4
A  = л × (d 2 − d 2) = л × (120.4182 − 72.2512) = 7288.72 mm2

Saving in 
material, As − Aℎ

= × 100 = 10382  − 7288.72 ×
100 =

As 10382
29. 79 %

Result : 1) Diameter of solid shaft, d = 114.973 mm

2) External diameter of hollow shaft, d1 = 120.418 

mm

3) Internal diameter of hollow shaft, d2 = 72.251 mm

4) Saving in material = 29.79 %
Example : 7.21 (Oct.92)

Compare the weight of a solid shaft with that of a hollow shaft
for the same material, length and designed to reach the same maximum
shear stress when subjected to same torque. Assume the inside diameter
of the hollow shaft equal to two third of the external diameter.

Solution :

Let, T  = Torque transmitted by the shaft,  fs= Maximum shear stress

l  = Length of the shaft

(a) Solid shaft

Let, d = Diameter of solid shaft

Unit – IV P7.15

16 sTorque transmitted by the shaft, T  =  л f  
d3

d3  = 16 × T = 5.093
л × fs

T
(fs)



d = 1.7205
T

(fs)

1

3

Weight of the solid 
shaft,

2л л
T s

1
3

W1  = plA1  = pl × 4 d = pl × 4 [1.7205 

(f  )   ]

2

= 2.3249 pl
T

(fs)

2

3

2

(b) Hollow shaft

Let, d1 = External diameter, d2 = Internal diameter  

Then, d2  = 3 d1  = 0.667 d1

Torque transmitted by the hollow shaft,

л 1
2 

T = × fs ×
=

16 d1
16

(d 4 − d 4) л × fs
d 4 − 

(0.667d
1
)4 × 1

d1

1T = 0.157488 fs d 3

1d 3 = T

= 6.3497 T0.157488 fs fs

1d = 1.8518
T

(fs)

1

3

T
(fs)

1
3

= 1.235
T

(fs)

1

3d2 = 0.667 × d1 = 0.667 × 1.8518

Weight of the hollow shaft,

2

2

4 1

2

W = plA  = pl × л (d 2 − d 2)

⎩

4 ⎨
[

= pl × л ⎪ 1.8518
T

1

3

(fs) ]

2

– 1.235  
[

1

3

2

⎭
(fs) ] 

⎬
T

⎪

= 1.4954 pl
T

(fs)

2

3

W1 =  
W2

2.3249 
pl

T

The ratio of weight of solid shaft to hollow 

shaft,
2

3

T

s

2

1.4954 pl (f )
3

(fs)   = 1. 5547
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Result :  1) The ratio of weight of solid shaft to hollow shaft = 1.5547



Unit – IV

Chapter 8.

SPRINGS

1. Introduction
A spring is a device which can undergo considerable amount of

deformation without permanent distortion. The general purpose of all

kinds of springs is to absorb energy and to release it as and when

required. Springs are also used to provide a means of restoring various

mechanisms to their original configurations against the action of some

external force.

1. Types of springs
The springs are classified as follows based on their forms :

1) Laminated or leaf 
springs

3) Spiral springs

2) Coiled helical 
springs

4) Disc springs
1) Laminated or leaf springs

Fig.8.1 Laminated or Leaf spring

A laminated spring consists of a number of arc shaped strips of

metal having different lengths but same width and thickness. They are

placed one over the other in laminations. The strips are bolted

together. The two types of laminated springs are :

(i) Semi - elliptical laminated springs

(ii) Quarter - elliptical laminated springs.

Uses : Thsese springs are used in railway wagons, coaches and

road vehicles to absorb shocks.

2) Coiled helical springs

A helical spring is made up of a wire wound in helix form. The

following two types of helical springs are used.

i) Closely coiled helical spring ii) Open coiled helical spring
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Comparison of closely coiled helical spring and open coiled helical spring

Closely coiled helical spring Open coiled helical spring

1) The pitch of the coil is very small The pitch of the coil is large

2) The gap between the successive 

turn  is small

The gap between the successive 

turn  is large

3) The helix angle is less (7o to 10o) The helix angle is more (>10oC)

4) Under axial load, it is subjected 

to  torsion only

It is subjected to both torsion 

and  bending

5) It can withstand more load It can withstand less load

The helical springs are further classified as 
follows :

Fig.8.2 Coiled helical springs

(a) Compression springs

A helical spring is said to be a compression spring, if the coils 

close  when subjected to axial load and open out when the load is 

removed.

Uses : These springs are used in automobiles and railway 

coaches  as shock absorbers.

(b) Tension springs

A helical spring is said to be a tension spring, if the coils open 

out  when subjected to axial load and closes when the load is removed.

Uses : These springs are used in spring balances and cycle 
stands.

(c) Torsion springs or extension springs

The coils of torsion springs are fully compressed. Both the ends 
of
the coil are straightened out. When one end is fixed and other end 

rotated, the  coil deforms and creates a force opposing the rotation.

Uses : These springs are used in mouse trap, automobile 

starters,  door hinges, etc.
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3) Spiral springs or constant force springs
It consists of a uniform thin strip wound into a spiral shape. 

The outer  end is pinned. The inner end is wound on a spindle by 

applying a torque. The

wound spring is released slowly over a period of time. It gives a 
constant force.

Uses : These springs are widely used in clocks.

Fig.8.3 Spiral spring Fig.8.4 Disc spring

4) Disc springs or Belleville washer
It is a convex disc shaped spring with a hole at the centre. It can

be used singly or in stacks to achieve a desired load. This spring

requires less space for installation. It can withstand a very large load.

Uses : These springs are used in clutches, high pressure valves,

drill bit shock absorbers, etc.

8.3 Closely coiled helical spring subjected to an axial load

Consider a closely coiled helical spring subjected to an axial 

load as  shown in the fig.8.5.

Let, d =  Diameter 

of the spring wire  R = Mean 

radius of the spring coil  н

= Number of turn

C = Modulus of rigidity of spring material

W = Axial load the spring

fs = Maximum shear stress induced in the wire due to 

twisting

& = Angle of twist in the spring wire and

ð = Deflection of the spring due to axial load
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Fig.8.5 Closely coiled helical spring

Twisting moment on the coil due to the axial load, T = W . R − − − 
−(1) л

16 sWe know that, T =
f d

3 – − − − (2)

16 s∴ WR = л f d3

s
f = 16 W R

лd3

C J

Length of the wire, l  = 2 л R . н

From the equation, T = 
C&

J l

& =  T  l = WR × 2л R н

C × л d4

& =

32

64 W R2н

C d4

Deflection of the 
spring,

ð = R& = R ×
64 W R2н

C d4

64 W R3н
6 =

C d4
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8.4 Stiffness of the spring

The stiffness of the spring is defined as the load required to 

produce  unit deflection. It is denoted by ‘s’.

s =

=

W

W

ð

64 W R3н
C d4

=
C d4

64 R3н

It is also known as spring constant.

8.5 Resilience or strain energy stored in a closely coiled  

helical spring.

Energy stored = Average load × Deflection

W 64 W R3н 32 W 2 R3н
= × =2 C d4 C d4

8.6 Applications of springs
1) To apply forces and controlling motion, as in brakes and clutches.

2) Measuring forces, as in spring balances.

3) Storing energy, as springs used in watches and toys.
4) Reducing the effect of shock and vibrations in vehicles and machine  

foundations.
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Example : 8.1 (Apr.89, Oct.90)

A closely coiled helical spring of alloy steel wire of 10mm
diameter having 15 complete turns with the mean coil diameter as
10mm. Calculate the stiffness of the spring. Take C = 90 × 103 N/mm2.

Given : Diameter of wire, d = 10 mm  

Mean diameter of coil, D = 100 mm

Number of turns, н = 15

Modulus of rigidity, C   =   90 × 103 

N/mm2
To find : 1) Stiffness of 
spring, s

2

2

Solution :

Mean radius, R = D = 100 = 50 mm

The stiffness of spring, s = =
Cd4 90 ×
103  × 10464 R3н 64 ×

503  × 15

= 7. 5 N/mm

Result : 1) Stiffness of spring, s = 7.5 N/mm

Example : 8.2 (Oct.03)

Calculate the modulus of rigidity of a spring of 10 turns 65mm
mean diameter and wire of 6.5mm diameter. The spring compresses
10mm under a load of 70N.

Given : Number of turns, н  
= 10 Mean diameter of coil, D = 65 mm  

Diameter of wire, d = 6.5 mm

Load, W = 70 N  

Deflection, ð = 10 mm

To find : 1) Modulus of rigidity, C

Solution :

Mean radius, R = D = 65 = 32.5 mm2 2

Relation for modulus of rigidity ⇒ ð 
=

64 WR3н

Cd4

C =
64 WR3н 64 × 70 × 32.53  

× 10ð d4 10 ×
6.54

= = 86. 154 × 103  

N/mm2

Result : 1) Modulus of rigidity, C = 86. 154 × 103 N/mm2

SOLVED PROBLEMS
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Example : 8.3 (Oct.92)

A closely coiled helical spring has the stiffness of 40N/mm.
Determine its number of turns when the diameter of the wire of the
spring is 10mm and mean diameter of the coil is 80mm. Take C = 0. 8 ×
105 N/mm2.
Given : Stiffness, s  = 40 N/mm

2

2

Mean diameter of coil, D = 80 mm  

Diameter of wire, d = 10 mm

Modulus of rigidity, C  = 0.8 × 105 N/mm2

To find : 1) Number of turns in the spring, н

Solution :

Mean radius, R = D = 80 = 40 mm

Stiffness, s =
Cd4

64 R3н

н =
Cd4 0.8 ×
105 × 10464 R3s 64 ×

403 × 40

= = 5. 2 ≈ 6

Result : 1) Number of turns in the spring, н = 
6
Example : 8.4 (Oct.15)

A closely coiled helical spring made of 12mm steel wire having 12
turns of mean radius 60mm elongates by 15mm under a load. Find the
magnitude of the load if the modulus of rigidity is given as 7. 5 × 104

N/mm2.
Given : Diameter of wire, d = 12 mm  

Number fo turns, н = 12

Mean radius of coil, R = 60 mm  

Deflection of spring, ð = 15 mm

Modulus of rigidity, C  = 7.5 × 104 N/mm2

To find :  1) Magnitude of load, W

Solution :

Deflection of spring, ð =
64 WR3н

Cd4

W =
ð × C d4 15 × 7.5 × 104 ×
12464 R3  н 64 × 603  ×
12

= =

Unit – IV P8.2

140. 63 N

Result : 1) Magnitude of load, W =140.63 N



Example : 8.5 (Apr.01, Oct.13)

A closely coiled helical spring is to carry a load of 100KN. The
mean coil diameter is 15 times that of the wire diameter. Calculate
these diameters if the shear stress is limited to120N/mm2.

Given : Load, W    =   100 KN = 100 × 103  N

Shear stress, fs  = 120 N/mm2

To find :  1) Diameter of wire, d 2) Diameter of coil, D

Solution :

Let, d = Diameter of wire ;   D = Diameter of coil

Then, D = 15 × d ; R = D = 15 d = 7.5 d
2 2

Torque, T = W × R = 100 × 103 × 7.5 d = 7.5 × 105 d

s16

16

Also, torque, T  =  л f   d3  =  л × 120 × d3  = 23.562 d3

∴ 23.562 d3 = 7.5 × 105 d

2d =
7.5 × 105

23.56
2

= 31830.91

Unit – IV P8.3

178. 4 mmd  = ; D = 15 d = 15 × 178.4 = 2676 mm

Result : 1) Diameter of wire, d = 178.4 mm

2) Diameter of coil, D = 2676 mm

Example : 8.6 (Apr.04, Oct.14, Apr.18)

The mean diameter of a closely coiled helical spring is 5 times
the diameter of wire. It elongates 8mm under an axial pull of 120N. If
the permissible shear stress is 40N/mm2, find the size of wire and
number of coils in the spring. Take C = 0. 8 × 105 N/mm2.

Given : Deflection, ð = 8 mm  

Axial load, W = 120 N

Shear stress, fs  = 40 N/mm2

Modulus of rigidity, C  = 0.8 × 105 N/mm2

2) Number of turns, 
н

To find :   1) Diameter of wire, d

Solution :

Let, d = Diameter of wire ;   D = Diameter of coil

Then,  D = 5 × d ; R = D = 5 d = 2.5 d
2 2

Torque, T  = W  × R = 120 × 2.5 d  = 300 d



s16

16

Also, torque, T  =  л f   d3  =  л × 40 × d3  = 7.854 d3

∴ 7.854 d3 = 300 d

d2 = 300 = 38.197  
7.854

6. 18 mmd = ;  R = 2.5 d = 2.5 × 6.18 = 15. 45 mm

Relation for number of turns ⇒ ð 
=

64 WR3н

Cd4

н =
Cd4 × ð 0.8 × 105 ×
6.184 × 864 W R3 64 × 120 ×
403

= = 32.96 ≈ 33

Result : 1) Diameter of wire, d = 6.18 mm

2) Number of turns, н = 33

Example : 8.7 (Oct.02, Apr.14, Oct.16, Apr.17)

A closely coiled helical spring made of steel wire of 10mm
diameter has 10 coils of 120mm mean diameter. Calculate the deflection
of the spring under an axial load of 100N and the stiffness of the spring.
Take C = 1. 2 × 105 N/mm2.

,

Given : Diameter of wire, d = 10 mm  

Number of turns, н = 10

Mean diameter of coil, D = 120 mm  

Axial load, W = 100 N

Modulus of rigidity, C  = 1.2 × 105 N/mm2

To find :   1) Deflection, ð 2) Stiffness, s

Solution :
Mean radius, R = D = 120 = 60 mm

2 2

Deflection, ð = =
64 WR3н 64 × 100 × 603  

× 10Cd4 1.2 × 105 ×
104

= 11. 52 mm

Stiffness, s = W = 100 =
δ 11.52

8. 68 N/mm

Result : 1) Deflection, 6 = 11.52 mm 2) Stiffness, s = 
8.68 N/mm
Example : 8.8 Oct.88, Apr.92, Apr.01, Oct.12, Apr.13

Design a closely coiled helical spring of stiffness 20N/mm
deflection. The maximum shear stress in the spring material is not to
exceed 80N/mm2 under a load of 600N. The diameter of the coil is to be
10 times the diameter of the wire. Take C = 85 × 103 N/mm2.
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Given : Stiffness of the spring, s = 20 N/mm

Shear stress, fs  = 80 N/mm2

Axial load, W = 600 N

Modulus of rigidity, C   =   85 × 103 N/mm2

Solution :

Let, d = Diameter of wire ;   D = Diameter of coil

Then,  D = 10 d ; R = D = 10 d = 5 d
2 2

Torque, T  = W  × R = 600 × 5 d  = 3000 d

s16

16

Also, torque, T  =  л f   d3  =  л × 80 × d3  = 15.708 d3

∴ 15.708 d3 = 3000 d

d2 = 3000 = 190.986  
15.708

d = 13.82 mm ≈ 14 mm

D = 10 d = 10 × 14 = 140 mm 70 mm

Relation for number of turns ⇒ s 
=

;   R = 5d  = 5 × 14 =

Cd4

64 R3н

н =
Cd4 85 ×
103 × 14464 R3s 64 ×

703  × 20

= = 7. 44 ≈ 8

Result : 1) Diameter of coil, D = 140 mm

2) Diameter of wire, d = 14 mm

3) Number of turns, н = 8

Example : 8.9

A closely coiled helical spring is to be designed to carry an axial
load 2500N under a deflection of 70mm. The number of coil is to be
limited to 10 and the coil diameter is 10 times the wire diameter.
Calculate the diameter of the coil and shear stress produced in the
spring. Take C = 85KN/mm2.
Given :

Unit – IV P8.5

Axial load, W = 2500 N  

Deflection, ð = 70 mm

Number of coil, н = 10

Modulus of rigidity, C  = 85 KN/mm2 = 85 × 103 N/mm2

To find :  1) Diameter of coil, D 2) Shear stress, fs



Solution :

Let, d = Diameter of wire ;   D = Diameter of coil

Then,  D = 10 d ; R = D = 10 d = 5 d
2 2

Deflection, ð = =
64 WR3н 64 × 2500 × (5d)3  

× 10
Cd4 85 × 105 ×
d4

70 = 2352.94

d

d  = 2352.94 = 33. 61 mm ≈
70

D = 10 d  = 10 × 34 =

34 mm

340 mm

Torque, T  = W  × R = 2500 × (5 × 34) = 425000 N-mm

16 sAlso, torque, T = л f d3

s
л d3 л 
× 343

f   = 16 T = 16 × 425000 = 55. 07 
N/mm2

Result : 1) Diameter of coil, D = 340 mm 2) Shear stress,fs = 55.07 
N/mm2

Example : 8.10 (Oct.92)

A closely coiled helical spring has to absorb 50N–m of energy
when compressed by 50mm. The coil diameter is 12 times the wire
diameter. The number of coil is 10. Determine the diameters of the wire
and coil, if C = 0. 08 × 106N/mm2.

Given : Energy absorbed   =   50 N–m = 50 × 103  

N–mm  Deflection, ð = 50 mm

Number of coil, н = 10

Modulus of rigidity, C  = 0.08 × 106 N/mm2

To find :  1) Diameter of coil, D

Solution :

Let, d = Diameter of wire ;

2) Diameter of wire, 
d

D = Diameter of coil

Then,  D = 12 d ; R = D = 12 d = 6 d
2 2

Energy absorbed by the coil = Average load ×
deflection

50 × 103  = W × 50
2

W =
2 × 50 × 103

50
= 2000 N
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Deflection, ð =
64 WR3н

=
64 × 2000 × (6d)3  ×
10Cd4 0.08 × 106 ×

d4

50

50 = 3456

d

d  = 3456 = 69. 12 ≈ 70 mm

D = 12 d = 12 × 70 = 840 mm

Result : 1) Diameter of coil, D = 840 mm   2) Diameter of wire, d = 70 
mm
Example : 8.11 (Oct.03, Oct.17)

A truck weighing 30KN and moving at 5Km/hr has to be
brought to rest by a buffer. Find how many springs, each of 18 coils will
be required to store the energy of motion during compression of
200mm. The spring is made out of 25mm diameter steel rod coiled to a
mean diameter of 240mm. Take C = 0. 84 × 105N/mm2.

Given : Weight of the truck, W1 = 30 KN = 30 × 103 N

Velocity of the truck, u = 5Km/hr 
=

5×103×103

60×60
=1388.889 
mm/s

Number of coil, н = 18  

Deflection, ð = 200 mm

Diameter of wire, d = 25 mm  

Diameter of coil, D = 240 mm

Modulus of rigidity, C = 0.84 × 105 N/mm2

To find : 1) Number of springs

Solution :

Mean radius, R = D = 240 = 120 mm
2 2

Kinetic energy stored in the 
truck,W1u2

K. E  =

=

30 × 103  ×
1388.88922 g 2 × 9.81 

× 103

6= 2.95 × 10   N-mm

Let. W = Axial load act on each spring

Then deflection, ð 
=

64 WR3н

Cd4

W =
Cd4 × ð

64 R3н
=

0.84 × 105 × 254 × 200

64 × 1203 × 18
= 3296.65 N
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Energy stored in each spring = Average load × deflection

= W × ð = 3296.65 × 200 = 329665 N-mm
2 2

No. of springs =
Kinetic energy stored in the 
truckEnergy stored in each 

spring
=

2.95 × 106

3296.6
5

= 8. 95 ≈ 9

Result : 1) Number of springs required = 
9
Example : 8.12 (Oct.04, Oct.16)

A weight of 150 N is dropped on to a compression spring with
10 coils of 12 mm diameter closely coiled to a mean diameter of 150
mm. If the instantaneous contraction is 140 mm, calculate the height of
drop. Take C = 0. 8 × 105N/mm2.

Given :  Weight dropped on the spring, P   = 150 N

Number of turns, н = 10  

Deflection, ð = 140 mm

Diameter of wire, d = 12 mm

Diameter of coil, D  =  150 mm  

Modulus of rigidity, C = 0.8 × 105 N/mm2

To find :  1) Height of drop of weight, ℎ

Solution :

Mean radius, R = D = 150 = 75 mm
2 2

Let, ℎ = Height of drop of weight before strike

Potential energy stored in the weight,

= P (ℎ + ðl) = 150 (ℎ + 140)

Let. W = Axial load act on each spring
Then, deflection, ð =

64 WR3н

Cd4

W =
Cd4 × ð 0.8 × 105 × 124 × 140

64 R3н 64 × 753 ×
10

= = 860.16 N

Unit – IV P8.8

Energy stored in spring = Average load × deflection

= W × ð = 860.16 × 140 = 60211.2 N-mm
2 2



After striking,

the potential energy stored in the weight is lost to compress the 
spring.

∴ Potential energy stored in weight = Energy stored in 
spring

150(ℎ + 140) = 60211.2

ℎ + 140 = 60211.2 = 401.408 mm
150ℎ = 401.408 − 140 = 261. 408 mm

Result : 1) Height of drop of weight, h = 261.408 mm

Unit – IV P8.9



Unit – V

Chapter 9. SHEAR FORCE AND BENDING

MOMENT DIAGRAMS

1. Beam

Beam is a structural member which is subjected to a system of

external forces acting perpendicular to its axis.

Whenever a beam is subjected to vertical loads it bends due to

the action of the load. The amount with which a beam bends, depends

upon the type of loads, length of the beam, elasticity of the beam and

the type of beam.

1. Classification of beams

Fig.9.1 Types of beam

The beams are generally classified according to the supporting  

conditions as follows.

1) Cantilever beam 2) Simply supported beam 3) 
Overhanging beam

4) Fixed beam 5) Continuous beam

1) Cantilever beam
If one end of the beam is fixed and the other end is free, then 

such  type of beam is called cantilever beam.
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2) Simply supported beam
If both the ends of the beam are made to rest freely on 

supports, then  such type of beam is called simply supported beam.

3) Overhanging beam

If the ends of the beam are extended beyond the supports in a 

simply  supported beam, then it is called as overhanging beam.

4) Fixed beam
If both the ends of a beam are rigidly fixed or built into the 

walls,  then it is called fixed beam.

5) Continuous beam
If a beam is provided with more than two supports, then it is 

called  as continuous beam.

9.3 Types of loading

Fig.9.2 Types of loading

A beam may be subjected to the following types of loads.

1) Point load or concentrated load.

2) Uniformly distributed load (udl).

3) Uniformly varying load.

1) Point load or concentrated load

If a load is acting exactly at a point in the beam then it is called 

point  load or concentrated load.
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2) Uniformly distributed load (udl)
If a load is spread over the beam in such a way that its

magnitude is same for each and every unit length of the beam, then it is

called uniformly

distributed load (udl).

3) Uniformly varying load
If a load is spread over the beam in such a way that its

magnitude is gradually varying within an unit length of the beam, then

it is called uniformly varying load.

4. Shear force

The shear force at a cross section of beam may be defined as

the unbalanced vertical forces to the left or right of the section. It is

denoted as SF.

4. Bending moment

The bending moment at a cross section of a beam may be

defined as the algebraic sum of the moments of the forces to the left or

right of the

section. It is denoted as BM.

4. Sign conventions.

Shear force

Consider a section X–X perpendicular to the axis of the beam.
All
the upward forces to the left of the section and all the downward forces 

to the  right of the section cause positive shear force.

Fig.9.3 Sign convention of shear force

All the upward forces to the right of the section and all the  

downward forces to the left of the section cause negative shear force.

Bending moment

Fig.9.4 Sign convention of bending moment

Unit – V 9.3



If the bending moment at a section is such a way that it tends to

bend the beam at that point to a curvature having concavity at the top

is taken as positive bending moment. The positive bending moment is

often called as sagging moment. The right anti–clockwise moment and

left clockwise moment are taken as positive moment.

If the bending moment at a section is such a way that it tends to

bend the beam at that point to a curvature having convexity at the top

is taken as negative bending moment. The negative bending moment is

often called as hogging moment. The right clockwise moment and left

anti–clockwise moment are taken as negative moment.

9.7 Relationship between load, shear force and bending moment

Fig.9.5 Relationship between load, SF and BM.

Consider a beam carrying a udl of r per unit length. Let us

consider a portion PQ of length dz and at a distance z from the left

hand support of the beam as shown in fig.9.5. Total load acting on the

beam length PQ is equal to r. dz

Let, shear force at P = F , and shear force at Q = F + dF

Bending moment at P = M and Bending moment at Q = M + dM

For equilibrium condition, ΣSF = 0

F   +  r. dz – (F   +  dF )  =  0

dF   =  r. dz

dz
dF = w   ----------------(1)

The above relation shows that the rate of change of shear force

is the rate of loading per unit length of the beam.

The force system in fig.9.5 may be simplified as shown in

fig.9.5(a). The total udl is considered to act as a point load at the middle

of the span over which it acts.

Unit – V 9.4



Fig.9.5(a) Relationship between load, SF and BM.

Taking moment of forces and couples about P,

−(M + dM) + M − r. dx dx + (F  + dF )dx = 0
2

−M − dM + M − r (dx)2  + F. dx + dF . dx = 0  2

Neglecting the small quantities

– dM + F. dz = 0

dM   =  F . dz

dM = F
dz

The above relation shows that the rate of change of bending  

moment about a section is equal to the SF at that section.

For maximum bending 
moment,

dM = 0 i.e. F 
= 0.

dzTherefore, the bending moment is maximum at a section where  

shear force is zero.

9.8 Standard cases of loading

1) Cantilever beam with a point load at its free end

Consider a cantilever AB of length l and carrying a point load W 

at  its free end B as shown in the fig.9.6. Consider a section X–X at a 

distance x

from the free end.

Shear force :

SF at B = +W (Plus sign due to right downward)

SF at X–X = +W (∵ There is no load between B and X–X)

SF at A = +W (∵ There is no load between X–X and A)

Bending moment :

Bending moment at X–X = – W z (Minus sign due to hogging)

The bending moment at any section is proportional to the 

distance  of that section from the free end.Unit – V 9.5



Fig.9.6 Cantilever with a point load at its free end

At B, z = 0;  ∴ BM = – W  × 0  =  0

At A, z = l;   ∴ BM = – W  × l   = – Wl

2) Cantilever beam with uniformly distributed load

Fig.9.7 Cantilever with uniformly distributed load
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Consider a cantilever AB of length l and carrying a uniformly

x

rx2

distributed load r per unit length over the entire length of the beam as 

shown  in the fig.9.7. Consider a section X–X at a distance z from the free 

end.

SF at X–X = +wx  (∵ Plus sign due to right downward)

Bending moment at X–X = −rx × 2 = −  2 (Hogging moment)
From the above two equations, the shear force varies according to a

straight line law, while the bending moment varies according to 
parabolic law.

Shear force : SF = 0

SF = rx  

SF = rl

At B, x = 0; At

X–X , x = x; At

A, x = l;

Bending moment :

At B, x = 0;

At X-X, x = x;

At A, x = l;

BM = 0

rx2
BM = −  2

rl2
BM = − 2

3) Simply supported beam with point load at the mid 
span

Fig.9.8 Simply supported beam with point load at mid 
span.
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Consider a simply supported beam AB of length l and carrying  

a  point load W at its mid point C as shown in the fig.9.8.

Let RA and RB be the reactions at the supports A and B. Taking  

moment about the support A,

Unit – V 9.8

RB × l = W × l
2

RB = Wl = W

2l 2

But, RA + RB = W
W

W

RA = W − 2 = 2

Consider a section X–X at a distance x from 
B.

Shear force : WShear force at B  = − 2 (∵ Minus sign due to right upward)

WShear force at X–X = − 2

WShear force remains constant between B and C and is equal to − 

2 W

WShear force at C = − 2 + W = 2Shear force remains constant between C and A and is 
equal to

W 

2

WShear force at A = + 2

Bending moment :

W

l W
l
Wl

Bending moment at X–X = + 2 x  (∵ Plus due to sagging)

At B, z = 0 ; BM = 0

At C,  x = 2 ; BM = + 2 × 2 = 4

At A, BM  = 0

4) Simply supported beam with uniformly distributed load over entire 
span

Consider a simply supported beam AB of length l and carrying a 

udl  of r per unit length, over the entire length as shown in the fig.9.9.



Fig.9.9 Simply supported beam with udl over the entire length

Let RA and RB be the reactions at the supports A and B. Taking  

moment about the support A,
l

RB × l = rl × 2

RB = rl2 
= rl

2l 2

But, RA + RB = rl
rl

rl

RA = rl − 2 = 2

Consider a section X–X at a distance x from 
B.

Shear force : rl

rl

l

rl

rl

wl

wl

Shear force at B  = − 2  
(∵ Minus sign due to right upward)

Shear force at X–X = − 2 + rx

Shear force at C 
(x = 2) = − 2 + 2 = 0

Shear force at A(z = l)  = − 2 + wl = 2
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Bending moment :

z

wlz

wz2

Bending moment at X–X = RBz − wz 2 =  2  −  2

At B, z = 0; BM  = 0

At C, ( 2) 2 (2)
z = l ; BM = wl × l − w l 2 

= wl2 
− wl2 

= wl2

2 2
4
8
8

At B (z = l wl2

wl2
2

2

BM = −
= 0

Unit – V 9.10

9.9 Hints for calculating SF and BM at a section

1) Calculation of shear force

(a) Consider a section at which shear force is to be calculated

(b) Consider all the loads which act either to the right or to the left of
the section.

(c) Find the algebraic sum of the loads by using sign conventions for

shear force. This sum gives the value of shear force at that section.

2) Calculation of bending moment

(a) Consider a section at which bending moment is to be calculated

(b) Consider all the loads which act either to the right or to the left of

the section.

(c) Take moment of these loads about that section.

(d) Find the algebraic sum of the moments by using sign convention of

bending moment. This sum gives the value of bending moment at

that section.

(e) A concentrated load which passes through the considered section

have zero moment about that section.

(f) The bending moment at the free end of a cantilever beam and the

two supports of SSB will be zero.

(g) The udl is considered to act as a point load at the middle of the span

over which it acts.



9.10 Hints for drawing SF and BM diagrams

1) Shear force diagram

(a) If there is a point load at a section, the shear force line will suddenly

increase or decrease by a vertical line.

(b) If there is no load between any two sections, the shear force will

remain constant and shear force line will be a horizontal straight

line parallel to the base line.

(c) If there is a uniformly distributed load between two sections, the

shear force line will be an inclined straight line.

(d) When a point load acts along with a uniformly distributed load, the

SF diagram will have two inclined lines separated by a vertical

straight line at a point where point load acts.

(e) In a cantilever beam, the maximum shear force will occur at the

fixed end. In a simply supported beam, the maximum shear force

will occur at the supports.

2) Bending moment diagram

(a) The bending moment line in a region between two point loads will be

an inclined straight line.

(b) The bending moment line in a region of udl will be a parabolic line.

9.11 Point of contraflexure

Overhanging beam can be considered as combination of simply

supported beam and a cantilever beam. We know that the bending

moment in the simply supported beam is positive, whereas the

bending moment in the

cantilever beam is negative. It is thus known that in an overhanging

beam, there will be a point, where the bending moment will change

sign from positive to negative and vice versa. Such a point, where the

bending moment

changes sign, is known as a point of contraflexure.
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Example : 9.1 (Apr.01)

A cantilever 2m long carries a point load of 3KN at its free end
and another point load of 2KN at a distance of 0.5m from the free end.
Draw the shear force and bending moment diagram.

Solution :

Fig.P9.1 SF and BM diagram [Example 9.1]

Calculation for shear force :

Shear force at C = +3 KN

Shear force at B  = +3 + 2 = 5 KN

Shear force at A = +5 KN (There is no load between B & A)

Calculation for bending moment :

Bending moment at C = 0

Bending moment at B = –3 × 0.5 = –1.5 KN–m  

Bending moment at A = –3 × 2 – 2 × 1.5 = –9 KN–m

SOLVED PROBLEMS

CANTILEVER BEAMS

Unit – V P9.1



Example : 9.2

A cantilever of span 10 m carries point loads of 6KN and 8KN at  
4m and 7m from the fixed end. Draw SF and BM diagram.

Solution :

Fig.P9.2 SF and BM diagram [Example 9.2]

Calculation for shear force :

SF at D  =  0 ( There is no load)

SF at C = + 6 KN

SF at B  = + 6 + 5 = +11 KN

SF at A = + 11 KN (∵ There is no load between B and A)

Calculation for bending moment :

BM at D  = 0  

BM at C = 0

BM at B  = – 6 × 3 = –18 KN–m

BM at A = – 6 × 7 – 5 × 4 = – 62 KN–m

Unit – V P9.2



Example : 9.3 (Apr.89, Oct.96, Oct.03, Oct.12, Apr.17)

A cantilever 4m long carries a udl of 30KN/m over half of its  
length adjoining the free end. Draw SF and BM diagrams.

Solution :

Fig.P9.3 SF and BM diagram [Example 9.3]

Calculation for shear force :

SF at C =  0 ( There is no load)

SF at B  = + 30 × 2 = + 60 KN

SF at A = + 60 KN ( There is no load between B 

and A)

Calculation for bending moment :
Note : udl is assumed as a point load acting at the middle of udl 

span.
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BM at C = 0
2BM at B   =   −30 × 2 × (2) = −60 KN-m

2BM at A   =   −30 × 2 × (2 + 2) = −180 KN-m

Example : 9.4 (Oct.88, Apr.92, Oct.03)

A cantilever of 2m long carries a point load of 20KN at 0.8mm
from the fixed end and another point load of 5KN at the free end. In
addition a udl of 15KN/m is spread over the entire length of the
cantilever. Draw the SF and BM diagrams.

Solution :

Fig.P9.4 SF and BM diagram [Example 9.4]

Calculation for shear force :

SF at C = + 5 KN

SF at B (Due to udl) = + 5 + (15 × 1.2) = + 23 KN

SF at B (Due to point load) = + 23 + 20 = + 43 KN

SF at A = +43 +(15 × 0.8) = +55 KN

Unit – V P9.4



Calculation for bending moment :

BM at C = 0
1. 
2

BM at B  = −(5 × 1. 2) − (15 × 1. 2 × 2 ) = − 16. 8 KN–m

2BM at A = −(5 × 2)– (15 × 2 × 2) − (20 × 0. 8) = − 56 KN–m

Example : 9.5 (Oct.92, Apr.13)

Draw the shear force and bending moment diagrams for the  
loaded beam shown in the fig.P9.5

Solution :

Fig.P9.5 SF and BM diagram [Example 9.5]

Calculation for shear force :

SF at D  = 0

SF at C = + 4 KN

SF at B  = + 4 + 3 = +7 KN

SF at A = +7 +(2 × 2) = +11 KN
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Calculation for bending moment :

BM at D  = 0  

BM at C = 0

BM at B  = – 4 × 2 = –8 KN–m
2BM at A = −(4 × 4) − (3 × 2) − (2 × 2 × 2) = −26 KN–m

Example : 9.6 (Apr.93)

Draw the shear force and bending moment diagrams for the  
loaded beam shown in the fig.P9.6

Solution :

Fig.P9.6 SF and BM diagram [Example 9.6]

Calculation for shear force :

SF at E = + 5 KN  

SF at D = + 5 KN

SF at C = + 5 + (20 × 1) = +25 KN

SF at B  = +5 +(20 × 1) + 20 = +45 KN

SF at A = + 45 KN (∵ There is no load between B & A)
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Calculation for bending moment :

BM at E  = 0
BM at D  = –5 × 0.5 = –2.5 KN–m 1
BM at C = −(5 × 1. 5) − (20 × 1 × 2) = −17. 5 KN–m

1BM at B  = −(5 × 2. 5) − [20 × 1 × (1 + 2)] = −42. 5 KN–m

BM at A = −(5 × 3. 5) − [20 × 1 × (2 + 2)] − 20 × 1) = −87. 5 KN–m

SIMPLY SUPPORTED BEAMS

Example : 9.7 (Apr.97)

A simply supported beam 5m span carries a point load of 20KN
at 2m from left support. Draw the shear force and bending moment
diagrams.

Solution :

Fig.P9.7 SF and BM diagram [Example 9.7]

Taking moment about 

A,  RB × 5 = 20 × 2

B

40
R   = = 
8 KN

5
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But, RA+ RB  = 20 KN

RA  = 20 – RB   = 20 – 8 = 12 KN

Calculation for shear force :

Shear force at B = – 8 KN (‡ Minus sign due to right 

upward)  Shear force at C = – 8 + 20 = +12 KN

Shear force at A = +12 KN (‡There is no load between C and A)

Calculation for bending moment :

Bending moment at B  = 0
Bending moment at C = + 8 × 3 = +24 KN–m  

Bending moment at A = +(8 × 5) – (20 × 2) = 0

Example : 9.8 (Oct.04)

A simply supported beam of 10m span is loaded with point
loads of 20KN, 40KN at 2m and 8m from left support respectively. Draw
the shear force and bending moment diagrams.

Solution :

Fig.P9.8 SF and BM diagram [Example 9.8]
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Taking moment about A,

RB × 10 = (40 × 8) + (20 × 2) = 360

Unit – V P9.9

B

360
R   = = 36 
KN

10

But, RA+ RB  = 60 KN

RA  = 60 – RB   = 60 – 36 = 24 KN

Calculation for shear force :

SF at B = – 36 KN
SF at D = – 36 + 40 = +4 KN  

SF at C = + 4 + 20 = 24 KN

SF at A = + 24 KN (‡There is no load between C and A)

Calculation for bending moment :

BM at B  = 0

BM at D  = +36 × 2 = +72 KN–m
BM at C = +(36 × 8) – (40 × 6) = +48 KN–m  

BM at A = 0

Example : 9.9 (Apr.88, Oct.03, Oct.16)

A simply supported beam of effective span 6m carries three
point loads of 30KN, 25KN and 40KN at 1m, 3m and 4.5m respectively
from the left support. Draw the SF and BM diagrams. Also indicate the
maximum value of bending moment.

Solution :

Taking moment about A,

RB × 6 = (30 × 1) + (25 × 3) + (40 × 4.5) = 285

B

285
R   = = 47.5 
KN

6

But, RA+ RB  = 30 + 25 + 40 = 95 KN

RA  = 95 – RB   = 95 – 47.5 = 47.5 KN

Calculation for shear force :

SF at B  = – 47.5 KN
SF at E  =  – 47.5 + 40 = – 7.5 KN  SF 

at D =  – 7.5 + 25 = + 17.5 KN  SF at 

C = + 17.5 + 30 = + 47.5 KN

SF at A = + 47.5 KN ( There is no load between C and A)



Fig.P9.9 SF and BM diagram [Example 9.9]

Calculation for bending moment :

BM at B  = 0

BM at E  = +47.5 × 1.5 = +71.25 KN–m

BM at D  = +(47.5 × 3) – (40 × 1.5) = + 82.5 KN–m
BM at C = +(47.5 × 5) – (40 × 3.5) – (25 × 2) = + 47.5 KN–m  

BM at A = 0

Example : 9.10 (Oct.96, Oct.17)

A beam is freely supported over a span of 8m. It carries a point
load of 8KN at 2m from the left hand support and a udl of 2KN/m run
from the centre up to the right hand support. Construct the SF and BM
diagram.
Solution :
Taking moment about 
A,

B [R  × 8 = (2 × 4) ×
4 +

4
(

2)]

+ (8 × 2) = 64

B

64
R   = = 
8 KN

8
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But, RA+ RB  = (2 × 4) + 8 = 16 KN

RA  = 16 – RB   = 16 – 8 = 8 KN

Fig.P9.10  SF and BM diagram [Example 9.10]

Calculation for shear force :

SF at B = – 8 KN

SF at D = – 8 + (2 × 4)= 0 KN  

SF at C = 0 + 8 = + 8 KN

SF at A = 8 KN (‡There is no load between C and A)

Calculation for bending moment :

BM at B  = 0 4BM at D  = +(8  × 4)– (2 × 4 × 2) = +16 KN–m

4BM at C = +(8 × 6)– [2  × 4 × (2 + 2)] = +16 KN–m

BM at A = 0
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Example : 9.11 (Oct.88, Apr.93, Oct.01, Apr.14, Oct.14, Apr.17)

A simply supported beam of length 6m carries a udl of 20KN/m
throughout its length and a point load of 30KN at 2m from the right
support. Draw the shear force and bending moment diagram. Also find
the position and magnitude of maximum bending moment.

Solution :

Fig.P9.11  SF and BM diagram [Example 9.11]

Taking moment about A,

B

6
(

2)

R  × 6 = 20 × 6 × + 
(30 × 4)

= 480

B

480
R   = = 80 
KN

6

But, RA+ RB  = (20 × 6) + 30 = 150 KN

RA  = 150 – RB   = 150 – 80 = 70 KN

Calculation for shear force :

SF at B  = – 80 KN
SF at C (Due to udl) = – 80 + (20 × 2) = –40 KN

SF at C (Due to point load) = – 40 + 30 = –10 KN
SF at A = –10+(20 × 4) = + 70 KN
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Calculation for bending moment :

BM at B  = 0
2BM at C   =   +(80  × 2) − (20  × 2  × 2)  =  +120 KN–m

BM at A  = 0

To find the maximum bending moment :

The bending moment will be maximum at a point where the 
shear

the shear force is 
zero.

force is equal to zero. Let D be the point at a distance ‘z’ from B at 
which

Shear force at D  = – 80 + 20z + 30 = 0

20 z = 50
z = 50 = 2.5

20

The bending moment will be maximum at a distance 2.5 m 

from  the right support (B).

Maximum bending moment at 
D
= 2

+(80 × 2. 5) – (30 × 0. 5) – (20 × 2. 5 × 2. 5
)

= 122. 5 KN–m

Example : 9.12 (Oct.04, Apr.18)

A simply supported beam of span 10m carries a udl of 20kN/m
over the left half of the span and a point load of 30KN at the mid span.
Draw the SFD and BMD. Find also the position and magnitude of
maximum bending moment.

Solution :

Taking moment about 
A,

Unit – V P9.13

B (R   × 10   =   (30 × 5) +    20 × 5 
×

5

2) = 400

B

400
R   = = 40 
KN

10

But, RA+ RB  = 30 +(20 × 5) = 130 KN

RA  = 130 – RB   = 130 – 40 = 90 KN

Calculation for shear force :

SF at B = – 40 KN

SF at C = – 40 + 30 = – 10 KN

SF at A = – 10 +(20 × 5) = + 90 KN



Fig.P9.12  SF and BM diagram [Example 9.12]

Calculation for bending moment :

BM at B  = 0
BM at C = +(40 × 5) = +200 KN–m  

BM at A = 0

To find the maximum bending moment :

The bending moment will be maximum at a point where the 
shear

the shear force is 
zero.

force is equal to zero. Let D be the point at a distance ‘z’ from C at 
which

Shear force at D  = – 40 + 30 + 20z = 0

20 z = 10
z = 10 = 0.5

20
The bending moment will be maximum at a distance 5.5m from the 

point B.  Maximum bending moment at D

0. 
5

= +(40 × 5. 5) – (30 × 0. 5) – (20 × 0. 5 × 2 ) = 202. 5 KN–m

Unit – V P9.14



Example : 9.13 (Apr.01)

A simply supported beam AB of 8m length carries an udl of
5KN/m for a distance of 4m from the left end support A. The rest of the
beam of 4m carries an udl of 10KN/m. Draw SF and BM diagrams.

Solution :

Fig.P9.13  SF and BM diagram [Example 9.13]

Taking moment about A,

B [R   × 8   = 10 × 4 ×
4 +

(

2)]

(

+    5 × 4 ×
4

4
2) = 280

B

280
R   = = 35 
KN

8

But, RA+ RB  = (10 × 4) + (5 × 4) = 60 KN

RA  = 60 – RB   = 60 – 35 = 25 KN

Calculation for shear force :

SF at B = – 35 KN
SF at C = – 35 + (10 × 4) = + 5 KN  

SF at A = +5 + (5 × 4) = + 25 KN

Unit – V P9.15



Calculation for bending moment :

BM at B  = 0

Unit – V P9.16

4BM at C = +(35 × 4) – (10 × 4 × 2) = +60 KN–m

BM at A = 0

To find the maximum bending moment :

The bending moment will be maximum at a point where the
shear force is equal to zero. Let D be the point at a distance ‘z’ from B
at which the shear force is zero.

Shear force at D  = – 35 + 10z = 0

z = 35 = 3.5
10

The bending moment will be maximum at a distance 3.5m from the 

point B.  Maximum bending moment at D

3. 
5

=   +(35 × 3. 5) – (10 × 3. 5 × 2  ) =  61. 25 KN–m

Example : 9.14 (Oct.94)

Draw the SF and BM diagrams for the beam shown in the  
fig.P.9.14 and also calculate the maximum bending moment.

Solution :

Taking moment about A,

RB × 5 = (4 × 4) +(8 × 3 × 2.5) + (2 × 1) = 78

B

78
R   = = 
15.6 KN

5

But, RA+ RB  = 4 +(8 × 3) + 2 = 30 KN

RA  = 30 – RB   = 30 – 15.6 = 14.4 KN

Calculation for shear force :

SF at B  = – 15.6 KN

SF at D  = – 15.6 + 4 = – 11.6 KN

SF at C(due to udl) = – 11.6 + (8 × 3) = +12.4 KN

SF at C(due to point load) = +12.4 + 2 = 14.4 KN

SF at A = + 14.4 KN
( There is no load between C and A)



Fig.P9.14  SF and BM diagram [Example 9.14]

Calculation for bending moment :

BM at B  = 0

BM at D  = +(15.6 × 1) = +15.6 KN–m

3BM at C = +(15. 6 × 4) – (8 × 3 × 2) = 14. 4 KN–m

BM at A = 0

To find the maximum bending moment :

The bending moment will be maximum at a point where the 
shear

the shear force is 
zero.

force is equal to zero. Let E be the point at a distance ‘z’ from D at 
which

Shear force at E  = – 15.6 + 4 + 8z  = 0
4

z = 11.6 = 1.45
8

The bending moment will be maximum at a distance 1.45m from the 

point D.  Maximum bending moment at E

Unit – V P9.17



= 2
+(15. 6 × 2. 45)– (4 × 1. 45)– (8 × 1. 45 × 1. 
45

) = 24. 01 KN–m

Example : 9.15 (Oct.91)

Draw the SF and BM diagrams for the beam shown in the  
fig.P.9.15 and also calculate the maximum bending moment.

Solution :

Fig.P9.15  SF and BM diagram [Example 9.15]

Taking moment about A,

B (R   × 6   =   (35 × 5) + (25 × 4) +    20 × 3 
×

3

2) = 365

B

365
R   = = 
60.833 KN

6

But, RA+ RB  = 35 + 25 + (20 × 3) = 120 KN

RA  = 120 – RB   = 120 – 60.833 = 59.167 KN

Calculation for shear force :

SF at B  = – 60.833 KN

SF at E  = – 60.833 + 35 = – 25.83 KN

Unit – V P9.18



SF at D  = – 25.833 + 25 = –0.833 KN

SF at C = – 0.833 KN ( There is no load between D and C)

SF at A = 0.833 + (20 × 3) = + 59.167 KN

Calculation for bending moment :

BM at B  = 0

BM at E  = +(60.833 × 1) = +60.833 KN–m

BM at D  = +(60.833 × 2) – (35 × 1) = + 86.666 KN–m

BM at C = +(60.833 × 3) – (35 × 2) – (25 × 1) = + 87.499 KN–m  

BM at A = 0

To find the maximum bending moment :
The bending moment will be maximum at a point where the

shear force is equal to zero. Let F be the point at a distance ‘z’ from C
at which the shear force is zero.

Shear force at F  = – 60.833+ 35 + 25 +20 z = 0
4

z = 0.833 = 0.04165
20

The bending moment will be maximum at a distance 0.04165m from 
the point C.Maximum bending moment at F

= +(60. 833 × 3. 04165)– (35 × 2. 04165) – (25 × 1. 04165) –
(20 × 0. 04165 × 0. 04165/2) = + 87. 516 KN–m

Example : 9.16

A simply supported beam of span 7m is subjected to a udl of
10KN/m for 3m from left support and a udl of 5KN/m for 2m from the
right support. Draw the SF and BM diagrams. Also calculate the
maximum bending moment.

Solution :

Taking moment about A,

Unit – V P9.19

B [R   × 7   = 5  × 2  ×
5 +

2
(

2)]

(

+

10 × 3 ×

3

2) = 105

B

105
R   = = 15 
KN

8

But, RA+ RB  = (5 × 2) + (10 × 3) = 40 KN

RA  = 40 – RB   = 40 – 15 = 25 KN

Calculation for shear force :

SF at B = – 15 KN

SF at D  = – 15 + (5 × 2) = – 5 KN



SF at C =  – 5 KN  SF 

at A = + 25 KN

Fig.P9.16  SF and BM diagram [Example 9.16]

Calculation for bending moment :

BM at B  = 0

2BM at D  = +(15 × 2) – (5 × 2 × 2) = +20 KN–m

BM at C = +(15 × 4) – (5 × 2 × 3) = + 30 KN–m  

BM at A = 0

To find the maximum bending moment :

The bending moment will be maximum at a point where the 
shear

the shear force is 
zero.

force is equal to zero. Let E be the point at a distance ‘z’ from C at 
which

Shear force at E  = – 15 +(5 × 2) +10 z = 0
4

z = 5
= 0.5

10
The bending moment will be maximum at a distance 0.5m from the 

point C.  Maximum bending moment at E

Unit – V P9.20

20. 5= +(15 × 4. 5)– [5 × 2 × (2. 5 + 2)] – (10 × 0. 5 × 2 ) = + 31. 25 KN–m



Unit – V

Chapter 10. THEORY OF BENDING

1. Introduction

When a beam is loaded with some external forces, bending

moment and shear forces are set up. The bending moment at a section

tends to bend

or deflect the beam and internal stresses are developed to resist this

bending. These stresses are called bending stresses and the relevant

theory is called theory of simple bending.

1. Simple bending or pure bending

If a beam tends to bend or deflect only due to the application of

constant bending moment and not due to shear force, then it is said to

be in a

state of simple bending or pure bending.

1. Theory of simple bending

Fig.10.1 Theory of simple bending

Consider a small length dx of simply supported beam subjected

to a bending moment M as shown in the fig.10.1(a). Due to the action of

the bending moment, the beam as a whole will bend as shown in

fig.10.1(b). Due to bending, the length of the beam is changed. Let us

consider a top most layer AB and bottom most layer CD. The layer AB is

subjected to compression and shortened to A’B’ while the layer CD is

subjected to tension and stretched to C’D’.

Let us consider the beam length dx consists of large number of

such layers. The length of all the layers are changed due to bending.

Some of them may be shortened while some others may be stretched.

However, there exists a layer EF in between the top and bottom layers

which will retain its original length even after bending. This layer EF

which is neither shortened nor stretched is known as the neutral layer

or neutral plane.
Unit – V 10.1



10.4 Assumptions made in the theory of simple bending
The following are the assumptions made in the theory of simple

bending.

1) The material of the beam is uniform throughout.

2) The material of the beam has equal elastic properties in all 
directions.

3) The beam material is stressed within elastic limit and thus obeys 
Hooke’s law.

4) The beam material has same value of Young’s modulus both in 

tension  and compression.

5) The radius of curvature of the beam is very large when compared 

with the  cross sectional dimensions of the beam.

6) The resultant pull or push on a transverse section of the beam is 
zero.

7) Each layer of the beam is free to expand or contract independently of 

the  layer, above or below it.

8) The cross section of the beam which is plane and normal before 

bending  will remain plane and normal even after bending.

5. Neutral axis
The line of intersection of the neutral layer with any normal

cross–
section of the beam is known as neutral axis of that section. It is denoted

as N.A. A beam is subjected to compressive stresses on one side of the

neutral axis and tensile stresses on the other side of the neutral axis.

There is no stress of any kind at the neutral axis.

5. Bending stress distribution

Fig.10.2 Bending stress distribution

Unit – V 10.2



There is no stress at the neutral axis. The magnitude of stress at

a point is directly proportional to its distance from the neutral axis. The

maximum stress taken place at the outer most layer.

In a simply supported beam, compressive stresses are

developed above the neutral axis and tensile stresses are developed

below the neutral axis. But in cantilever beam, tensile stresses are

developed above the neutral axis and compressive stresses are

developed below the neutral axis.

7. Moment of resistance

The maximum bending moment that a beam can withstand

without failure is called moment of resistance.

From the theory of simple bending, we know that one side of

the neutral axis is subjected to compressive stresses and other side of

the neutral axis is subjected to tensile stresses. These compressive and

tensile stresses form a couple, whose moment must equal to the

external moment (M). The moment of this couple which resist the

external bending moment is known as moment of resistance.

7. Derivation of flexural formulaa) To prove f = E
y

R

Fig.10.3 Bending stress

Unit – V 10.3



Strain in the layer, e 
=

Consider a small length dz of a beam subjected to a bending

moment as shown in the fig.10.3. As a result of this bending moment,

this small length of beam bend into an arc of circle with O as centre.

Let, M = Moment acting at the beam

& = Angle subtended at the centre by the arc and

R = Radius of curvature of the beam
Now consider a length PQ at a distance ′y′ from the neutral axis

EF. Let this layer be compressed to P1Q1 after bending.

We know that, decrease in length of this layer,

6l = PQ − P1Q1 = R& − (R − y)&

change in length = 
y& 

= 
y

R&

R

Original 
length

If ‘ƒ’ be the bending stress in the layer, 
then

E = Stress = 
ƒ

Strain

e

y
ƒ = E × e = E × R

y1

y2

ƒ = E  
y

R

Since E and R for a beam are constant, the bending stress is 
directly  proportional to the dƒistanceƒof the layeƒr from the neutral 
axis.

∴ 1 = 2 = ⋯ = maz

y
maz

b) To prove M = E
I

R

Fig.10.4 Neutral axis

Unit – V 10.4



Consider a small elemental area 6a of a beam at a distance ‘y’ 

from  neutral axis as shown in fig.10.4

Let ‘ƒ’ be the bending stress in the elemental area.

The force on the elemental area = ƒ × 6a

Moment of this force about neutral axis,

------------
(1)

E 6M  = ƒ  × 6a × y
Substitute, ƒ = y × R 

in equation (1)

R
6M = yE × 6a × y = E 6a y2

R

By definition, moment of 
resistance

M = Z6M =
Z

E E

R

R

6a y   =

Z6a y

2

22We know that Z6a y = Moment of inertia of the area of the 

section  about neutral axis i.e. I

R
∴ M = E × I (or)

M = E

I

R

------------
(2)

ƒ E
Also,  y = R -----------

(3)
Combining the equations (2) and (3)

M = 
ƒ 

= E

I y R

The above equation is called flexural equation.

10.9 Section modulus

The ratio of moment of inertia about the neutral axis to the 

distance  of the extreme layer from the neutral axis is known as section 

modulus or

modulus of section.

Unit – V 10.5

Section modulus =
Moment of inertial 

about N.A Distance of 

extreme layer from N.AWe know that the maximum bending stress occurs at the

outermost layer. Let ymaz be the distance of the outermost layer and

ƒmaz be the maximum stress.



MFrom the flexural formula, ƒmaz = I × ymaz   
(or)

mazM  = ƒ

×

I

ymaz

= ƒmaz × Z

Where Z= Section modulus or modulus of section.

Section modulus of various sections

1) Rectangular section

Consider a rectangular section of width ‘b’ and depth 
‘d’. bd3

d

Moment of inertia about the neutral axis, I = 12

Distance of extreme layer from N.A,  ymaz = 2

∴  Section Modulus, Z  =
I 

y
maz

bd3

2

= 12 = 
bd2

d

62. Circular section

Consider a circular section of diameter 
‘d’.

vd4

d

Moment of inertia about the neutral axis, I = 64

Distance of extreme layer from N.A,  ymaz = 2

∴  Section Modulus, Z  =
I 

y
maz

vd4

2

= 64 = 
vd3

d

321.10 Strength and stiffness of beam

Strength : The moment of resistance offered by the beam is

known as strength of a beam.

We know that, moment of resistance, M =  ƒ × Z

From the above relation, it is known that, for a given value of

bending stress, the moment of resistance depends upon the section

modulus. Therefore, if the value of Z is greater, the beam will be strong.

This ideal is put into practice, by providing beam of I –section, where

the flanges alone withstand almost all the bending stress.

Stiffness : The resistance offered by a beam against deflection

from its original straight condition is known as stiffness of the beam.

Unit – V 10.6



max 2

2

y = d = 5

= 2.5 mm

y
max

f
maxE

We know that, = R

Ef
max 

= 
R 

× y
max 

= 2 × 105  × 2.5

500
0

= 100 N/mm2

Result : 1) The maximum stress induced in the wire, fmaz = 100 

N/mm2

Example : 10.2 (Apr.93, Oct.02)

A steel rod 100mm diameter is to be bent into circular shape.
Find the maximum radius of curvature which it should be bent so that
stress in the steel should not exceed 120N/mm2.TakeE = 2 ×
105N/mm2.
Given : Diameter of the steel rod, d = 100 mm

Maximum bending stress, fmax = 120 N/mm2

Young’s modulus, E   =   2 × 105N/mm2

To find : 1) The radius of curvature, R

Solution :

Distance of extreme layer from neutral axis (N.A.)

max 2

2

y = d = 
100 = 50 mm

y
max

f
maxE

We know that, = R

max

E 2 × 105  ×
50

R = × ymax =
f 120

= 83333 mm

Result : 1) The radius of curvature, R = 83333 mm

SOLVED PROBLEMS

Example : 10.1

A steel wire of 5mm diameter is bent into a circular shape of 5m
radius. Determine the maximum stress induced in the wire. Take E = 2
× 105N/mm2.

Given :  Diameter of the steel wire, d = 5 mm
Radius of circular shape, R = 5 m = 5000 mm  

Young’s modulus, E   =   2 × 105N/mm2

To find :  1) The maximum stress induced, fmax

Solution :

Distance of extreme layer from neutral axis (N.A.)

Unit – V P10.1



Example : 10.3

A metallic rod of 10mm diameter is bent into a circular form of
radius 6m. If the maximum bending stress developed in the rod is
125N/mm2, find the value of Young’s modulus for the rod material.

Given : Diameter of the rod, d = 10 mm  

Maximum bending stress, fmax = 125 N/mm2

Radius of curvature, R = 6 m = 6000 mm

To find : 1) Young’s modulus, E

Solution :

Distance of extreme layer from neutral axis 
(N.A.)

max 2

2

y = d = 
100 = 50 mmf

maxE

We know that, =

E = R
y

max

× f

y
max

max

R

= 6000 × 125 =
5

1. 5 × 105  

N/mm2

Result : 1) Young’s modulus of the material, E = 1. 5 × 105 N/mm2

Example : 10.4 (Oct.01)

Determine the resisting moment of a timber beam rectangular 
in  section 125mm × 250mm, if the permissible bending stress is 
8N/mm2.
Given : Maximum bending stress, fmax  = 8 N/mm2

Width of the beam, b = 125 mm  

Depth of the beam, d = 250 mm

To find : 1) Resisting moment, M

Solution :

Moment of inertia, I  =
=

bd3

1
25 × 2503
12

12

8= 1.6276 × 10 mm 4

Distance of extreme layer from neutral axis 
(N.A.)

max 2

2

y = d = 250

= 125 mm

I
We know that, M = fmax

y
max

max

M =

× I =
y

f
max

8 × 1.6276 
× 108 12

5

=

Unit – V P10.2

10. 417 × 106  N-

mm

Result : 1) Resisting moment, M = 10. 417 × 106 N-mm



SIMPLY SUPPORTED BEAMS

Example : 10.5 (Oct.92, Oct.14, Oct.15)

A simply supported beam is 300mm wide and 400mm deep.
Determine the bending stress at 40mm above N.A, if the maximum
bending stress is 15N/mm2.

Given : Width of the beam, b = 300 mm  

Depth of the beam, d = 400 mm

Distance of layer from the N.A, y1 = 40 mm  

Maximum bending stress, fmax = 15 N/mm2

1

To find : 1) Bending stress at a distance 40mm above the N.A, f1

Solution :

Distance of extreme layer from neutral axis (N.A.)

max 2

2

y = d = 400

= 200 mm

y1

f
1f

max

We know that, = y
max

y
max

1

1

20
0

f
max

15

f = × y =
× 40 =

3 N/mm2

Result : 1) Bending stress at a distance 40mm above N.A, f1 = 3 

N/mm2

Example : 10.6 (Oct.88, Oct.91, Oct.12, Oct.13)

A rectangular beam 200mm deep and 100mm wide is simply
supported over a span of 8m and carries a central point load of 25KN.
Determine the maximum stress in the beam. Also calculated the value of
longitudinal fibre stress at a distance of 25mm from the surface of the
beam.
Given : Width of the beam, b = 100 mm  

Depth of the beam, d = 200 mm

Length of the beam, l = 8m = 8000 mm  

Central point load, W = 12 KN =12 × 103 N

To find : 1) Maximum bending stress, fmax

2) Bending stress at 25mm from the surface of the beam, 
f1

Solution : bd3 100 ×
2003

Moment of inertia, I = =
12 12

= 66.667 × 10   
mm

Unit – V P10.3

6

4



Distance of extreme layer from neutral axis 
(N.A.)

max 2

2

y = d = 200

= 100 mmIn case of simply supported beam subjected to a central point 

load,  Maximum bending moment, M = W l

4

=
25 × 103 × 8000

4
6= 50 × 10   N-mm

I
We know that, M = fmax

y
max

M 50 × 106  × 100
fmax  =  I   × ymax  =   66.667 × 106

= 75 N/mm2

y1

To find the bending stress at 25mm from the surface of the beam :

The distance  of layer from N.A,  = y1  = 100 − 25 = 75 mm  
f
1 = 

f
max

y
max

y
max

1

1

10
0

f
max

75

f = × y =
× 75 =

56. 25 
N/mm2

Result : 1) The maximum bending stress, fmaz = 75 N/mm2

2) Bending stress at 25mm from surface of beam, f1= 56.25 

N/mm2

Example : 10.7 (Apr.14, Apr.15, Oct.15)

A simply supported beam of rectangular cross section carries a
central load of 25 KN over a span of 6m. The bending stress should not
exceed 7.5N/mm2. The depth of the section is 400mm. Calculate the
necessary width of the section.

Given : Central point load,W    =   25 KN = 25 
× 103N

Length of the beam, l  = 6m = 6000 mm
2

Bending stres, fmax = 7.5 N/mm

Depth of the beam, d = 150 mm

To find : 1) Width of the beam, b

Solution : bd3 b ×
4003

Moment of inertia, I = =
12 12

= 5.333 × 106  b mm4

Unit – V P10.4

Distance of extreme layer from neutral axis 
(N.A.)

max 2

2

y = d = 400

= 200 mm



In case of simply supported beam subjected to a central point load,

Maximum bending moment, M = W l
4

=
25 × 103  ×
6000 4

6= 37.5 × 10   N-mm

I
We know that, M = fmax

y
max

5.333 × 106  

b

=
37.5 × 106

7.
5

b =

200

37.5 × 106  × 200
7.5 × 5.333 × 106

= 187. 5 mm

Result : 1) Width of the beam, b = 187. 5 
mm

Example : 10.8 (Apr.87, Oct.89, Oct.04, Apr.17)

A rectangular beam 300mm deep is simply supported over a
span of 4m. What udl per metre, the beam may carry if the bending
stress is not to exceed 120N/mm2. Given I = 8 × 106 mm4.

Given : Depth of the beam, d =  300 mm  

Length of the beam, l = 4m = 4000 mm

Maximum bending stress, fmax = 120 N/mm2

Moment of inertia, I   =   8 × 106  mm4

To find : 1) The of udl per metre, r

Solution :

Distance of extreme layer from neutral axis 
(N.A.)

max 2

2

y = d = 300

= 150 mm
In case of simply supported beam subjected to a udl,

rl2 r 
× 40002 8

6= 2 × 10  r N-mm

I

Maximum bending moment, M = =
8

We know that, M = fmaxy
max

8 × 106
=

2 × 106r

120

150r =
120 × 8 × 106

150 × 2 × 106
= 3.2 N/mm =

Unit – V P10.5

3. 2 KN/m

Result : 1) The udl per metre, w =3.2 

KN/m



Example : 10.9 (Apr.13)

A rectangular beam 60mm wide and 150mm deep is simply
supported over a span of 4m. If the beam is subjected to a uniformly
distributed load of 4.5KN/m, find the maximum bending stress induced
in the beam.
Given : Width of the beam, b = 60 mm  

Depth of the beam, d = 150 mm

Length of the beam, l  = 4m = 4000 mm

Uniformly distributed load, r = 4.5 KN/m = 4.5 N/mm

To find :   1) Maximum bending stress, fmax

Solution :

Moment of inertia, I  =
=

bd3

60 × 1503
12

12

= 16.875 × 10   
mm

6

4Distance of extreme layer from neutral axis 
(N.A.)

max 2

2

y = d = 
150 = 75 mm

In case of simply supported beam subjected to a udl,

rl2

4.
5 × 40002

8
6= 9 × 10   N-mm

I

Maximum bending moment, M =
=

8

We know that, M = fmax
y

max

M 9 × 106 ×
75fmax = I × ymax = 16.875 × 106 = 40 N/mm2

Result : 1) Maximum bending stress induced, fmaz = 40 

N/mm2

Example : 10.10

A timber beam of rectangular section supports a load of 20KN
uniformly distributed over a span of 3.6m. If depth of the beam section
is twice the width and maximum stress is not to exceed 7N/mm2, find
the dimension of the beam section.

Given : Total load, W    =   20 KN = 20 × 103  

N  Length of the beam, l = 3.6 m = 3600 mm

Depth of the beam, d = 2 × width of the beam (b)

Maximum bending stress, fmax = 7 N/mm2

To find : 1) Depth of the beam, d 2) Width of the 
beam, b

Solution : bd3 b ×
(2b)3

Moment of inertia, I = =
12 12

= 0.667 b

Unit – V P10.6

4



Distance of extreme layer from neutral axis 
(N.A.)

max 2

2

y = 
d = 2b = b

In case of simply supported beam subjected to a 
udl,

Maximum bending moment, M  = =
rl2

Wl
8

8
=

20 × 103  ×
3600 8

6= 9 × 10   N-mm

I
We know that, M = fmax

y
max

=
9 × 106

7

0.667 b4

b

7 × 0.667 b4  = 9 × 106  × b

3b  =
9 × 106

7 × 0.667
= 1.9276 × 106

b = 124. 453 

mm
Result : 1) Depth of the beam, d = 248.906 mm

2) Width of the beam, b = 124.453 mm

Example : 10.11 (Oct.02)

A beam of T–section flange 150mm × 50mm, web thickness
50mm, overall depth 200mm and 10m long is simply supported (with
flange uppermost) and carries a central point load of 10KN. Determine
the maximum fibre stress in the beam.

Fig.P10.1 Maximum BM in T–sectional beam [Example. 10.11]

Given : Central point load, W = 10 KN = 10 × 103 N  

Length of the beam, l   =   10m = 10 × 103  

mm

To find :   1) Maximum fibre stress, fmax

Unit – V P10.7



Solution :

In case of simply supported beam subjected to a point load,

Maximum bending moment, M = Wl
4

=
10 × 103  × 10 × 103

4
6= 25 × 10   N-mm

Distance of extreme layer from N.A, 
y

max
= Y ̅ = a1y1  + a2y2

=
(50 × 150 × 75) + (150 × 50 ×
175) (50 × 150) + (150 ×

50)

a1 + a2

= 125 mm

Moment of inertia of the section about an axis passing through the 

centroid  and parallel to the bottom face,
I = [Ig1 + a1ℎ 2

] + [Ig2 + a2ℎ 2
]1 2

= [
50 × 1503

12
2+ (50 × 150)(125 − 75)  ]

+ [
150 × 503

12
2+ (150 × 50)(125 − 175)  ]

I

= 32.8125 × 106 + 20.3125 × 106 = 53.125 × 106 mm4

We know that, M = fmax
y

max

f
max 

= 
I 

× y
max 

=M 25 × 106 ×
125 53.125 × 106

=

Unit – V P10.8

58. 824 
N/mm2

Result : 1) Maximum fibre stress, fmaz = 58.824 N/mm2

Example : 10.12 (Oct.90)

A simply supported beam of span 6m carries uniformly
distributed load of intensity 40KN/m over half of the span. The cross
section of the beam is symmetrical I–section with following dimensions:
Overall depth=300mm, flange width=120mm, flange thickness=25mm,
web thickness=12mm. Evaluate the maximum bending stress induced in
the beam.
To find :  1) Maximum bending stress induced in the beam, fmax

Solution :

Let RA and RB be the reactions at the supports of the beam.

Taking moment about A,

RB × 6 = (40 × 3 × 3/2) = 180

RB    = 1

8

0 

6

= 30 KN



But, RA+ RB    = (40 × 3) = 120 KN

RA   = 120 – RB  = 120 – 30 = 90 KN

Fig.P10.2 Maximum BM in I–sectional beam [Example. 10.12]

The shear force diagram for the beam is shown in the

fig.P10.2. The bending moment will be maximum at a point where the

shear force is equal to zero. Let D be the point at a distance ‘x’ from

the point C at which the shear force is zero.

Shear force at D = – 30 + 40 x = 0

30
x  = = 
0.75 m40

Maximum bending moment at D

= +(30 × 3.75) – (40 × 0.75 × 0.75/2)

=   101.25 KN–m = 101.25 × 106  N– mm

Moment of inertia of the section about an axis passing through the 

centroid  and parallel to the bottom face,

I = [ ] − [
120 × 3003 108 × 2503

12
1

2

8 4

] = 1.294 × 10  mm

Distance of extreme layer from neutral axis 
(N.A.)

max 2
y = Y ̅  = 300

= 150 mm

I
We know that, M = fmax

y
max

Unit – V P10.9



Mf
max 

= 
I 

× y
max 

= 101.25 × 106 × 150

1.294 × 108
= 117. 369 

N/mm2

Result : 1) Maximum bending stress, fmaz = 117.369 N/mm2

Example : 10.13 (Apr.01, Oct.03, Oct.18)

A wooden beam of rectangular section 100mm × 200mm is
simply supported over a span of 6m. Determine the udl it may carry if
the bending stress is not to exceed 7.5N/mm2. Estimate the
concentrated load it may carry at the centre of the beam with the same
permissible stress.
Given : Width of the beam, b = 100 mm  

Depth of the beam, d = 200 mm

Length of the beam, l  = 6m = 6000 mm

Maximum bending stress, fmax = 7.5 N/mm2

To find :  1) The udl over the entire span, r

2) The point load at the centre for the same 
stress, W

Solution :
Moment of inertia, I  =

=

bd3

1
00 × 2003
12

12

= 66.667 × 106 mm4

Distance of extreme layer from neutral axis 
(N.A.)

max 2

2

y = d = 200

= 100 mm
(a) In case of simply supported beam subjected to a 
udl rl2

r × 60002
8

6=4.5×10 r N-mm

I

Maximum bending moment, M = =
8

We know that, M = fmaxy
max

=
4.5 × 106r

7.
5

66.667 × 106

10
0r =
7.5 × 66.667 × 106

100 × 4.5 × 106
= 1.1111 N/mm = 1. 1111 KN/m

4

4

(b) In case of simply supported beam subjected to a point load,

Maximum bending moment, M = Wl = W × 6000 = 1500 W N-mm

I
We know that, M = fmax

y
max

1500 W = 
7.5

Unit – V P10.10

66.667 × 106

10
0



W =
7.5 × 66.667 × 106

100 ×
1500

= 3333.35 N = 3. 3333 KN

Result : 1) The udl over the entire span, w = 1.1111 KN/m

2) The point load at the centre of the beam, W = 3.3333 

KN

Example : 10.14 (Oct.93, Apr.13)

The moment of inertia of a rolled steel joist girder of
symmetrical section about N.A is 2460 × 104mm4. The total depth of
the girder is 240mm. Determine the longest span when simply
supported such that the beam would carry a udl of 5KN/m run and the
bending stress should not to exceed 120N/mm2.

Given : Moment of inertia, I   =   2460 × 104mm4

Depth of the girder, d = 240 mm

Load, r = 6 KN/m = 6 N/mm  

Maximum bending stress, fmax = 120 N/mm2

To find : 1) The longest span, l

Solution :

Distance of extreme layer from neutral axis (N.A.)

max 2

2

y = d = 240

= 120 mm
In case of simply supported beam subjected to a udl,

Maximum bending moment, M  = =
rl2

6 × l2
8

8

= 0.75 l 2

I
We know that, M = fmax

y
max

=
0.75 l2

120
2460 × 104

1
20 2l  =

2460 × 104

0.75
= 32.8 × 106

l = √32.8 × 106  = 5727. 128 mm = 5. 727 m

Result :  1) The longest span, l = 5.727 m

Example : 10.15 (Oct.92, Oct.94, Oct.12)

Find the dimensions of a timber joist span 10m to carry a brick
wall 0.2m thick and 4m height if the weight of the brick wall is
19KN/mm3 and the maximum permissible stress is limited to 8N/mm2.
The depth of the joist is to be twice its width.

Unit – V P10.11



Given : Thickness of the wall, t = 0.2 m = 200 mm  

Height of the wall, ℎ = 4m = 4000 mm  

Length of the wall, l = 10 m = 10000 mm

Weight of the brick wall = 19 KN/mm3

Depth of the joist, d = 2 × Width of the joist (b)

Maximum bending stress, fmax = 8 N/mm2

To find :  1) Width of joist, b 2) Depth of joist, d

Solution :

Volume of the brick wall over full length, 
V=Length×thickness×height

= 10 × 0.2 × 4 = 8 m3

Total weight of the wall over full length, W = 19 × 8 = 152 KN  

Load on the brick wall per unit length,

r = 152 = 15.2 KN/m = 15.2 N/mm
10

Distance of extreme layer from neutral axis (N.A.)
max 2

2

y = 
d = 2b = b

bd3
Moment of inertia, I  =

=

b × (2b)3

12

12

= 0.667 b4

In case of simply supported beam subjected to a udl,

rl2

15
.2×100002

8
8=1.9×10  N-mmMaximum bending moment, M = =

8

We know that, M = fmaxy
max

=

I

1.9 × 108

8

0.667 b4

b

8 × 0.667 b4  = 1.9 × 1508  × b

3b  =
1.9 × 108

8 × 0.667
= 35.607 × 10

Unit – V P10.12

6

b = 328.98 mm ≈ 330 mm

d = 2 × b = 2 × 330 = 660 mm

Result :  1) Width, b = 330 mm 2) Depth, d = 660 mm



Example : 10.16 (Oct.96, Apr.04, Apr.05, Oct.17)

A cast iron water pipe 450 mm bore and 20 mm thick is
supported at two points 6 m apart. Assuming each span as simply
supported, find the maximum stress in the metal when (a) the pipe is
running full (b) the pipe is empty. Specific weight of cast iron is 70
KN/mm3 and that of water is 9.81KN/mm3.

1

Given : Inside diameter of pipe, d2    =   450 

mm  Thickness of the pipe, t   =   

20 mm

Length of the pipe, l   =   6 m = 6000 mm

Specific weight of cast iron   =   70 KN/mm3  = 70 × 10−6  N/mm3

Specific weight of water = 9.81KN/mm3 = 9.81 × 10−6N/mm3

To find : 1) Maximum stress in the pipe when it is running full, fmax

2) Mmaximum stress in the pipe when it is empty, fmax

Solution :

Outside diameter of pipe, d1 = d2 + 2t = 450 + (2 × 20) = 490 mm

л4
(Cross sectional area of pipe, A  = d  − d1

2

2

2

)

= л (4902 − 4502
) = 29531 mm2

4

Weight of the pipe per unit length, r1 = A1 × Sp. rt. of pipe

= 29531 × 70 × 10−6  = 2.067 N/mm

Cross sectional area of the water section,
2

2

4

4

A   = л × d 2  = л × 4502  = 1.5904 × 105  mm2

Weight of water per unit length, r2 = A2 × Sp. rt. of rater

= 1.5904 × 105  × 9.81 × 10−6  = 1.56 N/mm

(a) When the pipe is running full

Total weight per unit length, r = r1 + r2 = 2.067 + 1.56 = 3.627 N/mm

In case of simply supported beam subjected to a udl,

Maximum bending moment, M 
=

rl2

8

=
3.627 × 60002

8
6= 16.3215 × 10   N-

mm
Distance of extreme layer from neutral axis 
(N.A.)

max 2

2 Unit – V P10.13

d1
y =

= 490 = 
245 mm



л

64
(Moment of inertia, I =

d  − d
1

2

4

4

)

64
= л (4904 − 4504

) = 8.169 × 108 mm4

I
We know that, M = fmax

Mf
max 

= 
I 

× y
max 

=

y
max

16.3215 × 106  ×
245 8.169 × 108

= 4. 895 
N/mm2

(b) When the pipe is empty, only pipe weight is 
considered.

Weight per unit length, r = r1  = 2.067 N/mm

In case of simply supported beam subjected to a udl,
Maximum bending moment, M 
=

rl2  

8

=
2.067×60002

8
6= 9.3015 × 10   N-mm

I
We know that, M = fmax

Mf
max 

= 
I 

× y
max 

=

y
max

9.3015 × 106 × 245

8.169 × 108
= 2. 79 N/mm2

Result : 1)   Stress in the pipe when it is running full, fmaz   = 4.895 

N/mm2

2) Stress in the pipe when it is empty, fmaz = 2.79 N/mm2

CANTILEVER BEAMS

Example : 10.17 (Oct.92, Apr.13, Apr.14)

A cantilever of span 1.5m carries a point load of 5KN at the free
end. Find the modulus of section required, if the bending stress is not to
exceed 150 N/mm2.

Given : Load at the free end, W = 5 KN = 5000 N  

Length of the beam, l = 1.5 m = 1500 mm

Maximum bending stress, fmax = 150 N/mm2
,

To find : 1) Section modulus, Z

Solution :

In case of cantilever subjected to a point load at the free end,

Maximum bending moment, M  = Wl = 5000 × 1500 = 7.5 × 106N-mm

max

M

7.5 × 106

Section modulus, Z = =
f

1
50

=

Unit – V P10.14

50000 mm3

Result : 1) Section modulus, Z = 50000 mm3



Example : 10.18 (Apr.90, Oct.16)

A cantilever beam of span 2m carries a point load of 600N at
the free end. If the cross–section of the beam is rectangular 100mm
wide and 150mm deep, find the maximum bending stress induced.

Given : Length of the beam, l = 2 m = 2000 mm  

Load at the free end, W = 600 N

Width of the beam, b = 100 mm  

Depth of the beam, d = 150 mm

To find : 1) Maximum bending stress, 
fmax

Solution : bd3 100 ×
1503

Moment of inertia, I = =
12 12

6= 28.125 × 10   
mm

4

Distance of extreme layer from neutral axis 
(N.A.)

max 2

2

y = d = 
150 = 75 mm

I

In case of cantilever subjected to a point load at the free end,

Maximum bending moment, M = Wl = 600 × 2000 = 1.2 × 106N-mm

We know that, M = fmax
y

max

M 1.2 × 106 ×
75fmax  =  I   × ymax  =   28.125 × 106    = 3. 2 N/mm2

Result : 1) Maximum bending stress, fmaz = 3.2 

N/mm2

Example : 10.19

A cantilever beam is rectangular in section having 80mm width
and 120mm depth. If the cantilever is subjected to a point load of 6KN at
the free end and the bending stress is not to exceed 40N/mm2, find the
span of the cantilever beam.

,

Unit – V P10.15

Given : Width of the beam, b = 80 mm  

Depth of the beam, d = 120 mm

Point load, W = 6 KN = 6000 N

Maximum bending stress, fmax = 40 N/mm2

To find : 1) Span of the beam, l



Solution :

Moment of inertia, I  =
=

bd3

80 × 1203
12

12

6= 11.52 × 10   mm4

Distance of extreme layer from neutral axis 
(N.A.)

max 2

2

y = d = 
120 = 60 mm

I

In case of cantilever subjected to a point load at the free end,

Maximum bending moment, M = Wl = 6000 l

We know that, M = fmax
y

max
6000 l

= 40
11.52 × 106

l =

60

40 × 11.52 × 106

6000 ×
60

= 1280 mm = 1. 28 m

Result : 1) Span of the beam, l = 1.28 m

Example : 10.20

A square beam 20mm × 20mm in section and 2m in long is
supported at the ends. The beam fails when a point load of 400N is
applied at the centre of the beam. What udl per metre will break a
cantilever of the same material 40mm width and 60mm deep and 3m
long.
(i) Simply supported beam

Given : Width of the beam, b = 20 mm  

Depth of the beam, d = 20 mm

Length of the beam, l = 2m = 2000 mm  

Central point load, W = 400 N

To find : 1) Maximum bending stress, 
fmax

Solution :Moment of inertia, I  =
=

bd3

20 × 203
12

12

4= 1.333 × 10 mm 4

Distance of extreme layer from neutral axis 
(N.A.)

max 2

2

y = d = 
20 = 10 mm

4

4

In case of simply supported beam subjected to a point load,

Maximum bending moment, M  = Wl = 400×2000 = 2 × 105  N-
mm

I
We know that, M = fmax

y
max

Unit – V P10.16



M 2 × 105 × 10
fmax = I × ymax = 1.222 × 104 = 150 N/mm2

Result : 1) Maximum bending stess, fmaz = 150 N/mm2

(ii) Cantilever beam

Given : Width of the beam, b = 40 mm  

Depth of the beam, d = 60 mm

Length of the beam, l  = 3m = 3000 mm

To find : 1) Safe udl spread over the entire 
span, r

Solution :
Moment of inertia, I  =

=

bd3

40 × 603
12

12

5= 7.2 × 10 mm 4

Distance of extreme layer from neutral axis 
(N.A.)

max 2

2

y = d = 
60 = 30 mm

For the same material, the bending stress should be equal

∴ Maximum bending stress in the beam, fmax = 150 
N/mm2

In case of cantilever beam subjected to a udl over entire 
span,

rl2

w×30002

Maximum bending moment, M = =
2

2

6= 4.5 × 10 r N-mm

We know 
that, I

M
= 

f
max

y
max

4.5 × 106 r

7.2 × 105
=

r =

150

30

150 × 7.2 × 105

30 × 4.5 × 106
= 0.8 N/mm =

Unit – V P10.17

0. 8 KN/m

Result : 1) Safe udl spread over the entire span, w = 0.8 KN/m

Example : 10.21 (Oct.95)

A beam of I–section 300mm × 150mm has flanges 20mm thick
and web 13mm thick. Compare its flexural strength with that of a
rectangular section of the same weight and same material, when the
depth being twice the width.

Solution :

Area of I–section = (300 × 20) + (13 × 110) + (300 ×
20)

= 13430 mm2



] − [

Moment of inertia of the I–section,

300 × 1503 (300 − 
13) × 110312 12

6I  = [ ] = 52.542 × 10   mm 4

The section is symmetrical about X-X and Y–Y axis.

max 2
∴ y = Y ̅  = 150

= 75 mm
1Section modulus of I section, Z = I 

y
max

=
52.542 × 106

75
5= 7.0056 × 10   

mm

3

Fig.P10.3 Comparison of flexural strength [Example. 10.21]

b = Width of the required rectangular section

d = Depth of the required rectangular section

Let,

2

Then, d = 2b

For same weight of two beams made of same material, the 

area  of two beams must be equal.

∴  Area of I section = Area of rectangular section

13430 = bd = b(2b) = 2b2

b2 = 13430 = 6715

b = 81. 945 mm

d  = 2b = 2 × 81.945 = 163. 89 mm

Section modulus of rectangular section, Z2 
=

bd
2  

6
=

81.945 ×
163.8926

= 3.668 × 105  mm3

The strength of the beam is proportional to its section 
modulus.
∴

Flexural strength of I 
beam

Z1 × E1

Z1
=

=

Flexural strength of rectangular beam Z2 
× E2 Z2 (∵ For same material, E1 = E2)

Unit – V P10.18



=
7.0056 × 105

3.668 × 105
= 1. 9099

Result :  1) The ratio of flexural strength of two beams = 1.9099

Example : 10.22

Compare the weights of two beams of same material and of
equal flexural strengths, one being circular solid section and other being
hollow circular section. The internal diameter being 7/8 of the external
diameter.
Solution :

7

Let, D = Diameter of the solid beam

d1 = External diameter of the hollow beam

d2 = Internal diameter of the hollow beam

Then,  d2  = 8 d1  = 0.875 d1

Area of solid beam = л D2

4

л

Unit – V P10.19

4
(Area of hollow beam =

d  − d
1

2

2

2

)

л
[ 1

2= d  − 
(0.875 d )

2
1     

]
4

л

4
= [ 1

2d  − 0.765625 d 1
2
]

л

4
=

× 0.234375 d

1
2

1Section modulus of solid beam, Z = л D3

Section modulus of hollow beam, Z2 =
d 4 − d 4

32
л

1

2
32 [

d
1

]

=
л

[ 1d  − (0.875d )
4

4

1     
]

=

32 × d1

л

32 × d1
[d  − 0.5862 d1

1

4

4

]

32 × d1 321 1= л × 0.4138 d 4 = л ×
0.4138 d 3

Since both the beams have the same flexural strength, the 

section  modulus of both the beams must be equal.

∴ Z1 = Z2

32

32

1
л × D3 = л × 0.4138 d 3

1D3 = 0.4138 d 3



4

Taking cube root on both sides,

D = 0.7452 d1

Weight of two beams are proportional to their cross sectional areas.

Weight of solid beam
= Area of solid beam

Weight of hollow beam Area of hollow beam
л

D2

= л
4 1

× 0.234375 d 2

=
(0.7452 
d1)2

1
0.234375 d 2

0.5553 d 2

1
0.234375 d 2

= 1  

=
2. 369

Result : 1) The ratio of weight of solid and hollow beams = 
2.369

Unit – V P10.20


