Introduction to materials



Introduction to
materials

Without Materials there 1s No
Engineering



Types of

Materials
« Materials can be divided into the
following
categories

~ Crystalline
Amorphous



Crystalline Materials

» These are materials containing one or many
crystals. In each crystal, atoms or 1ons show
a long range periodic arrangement.

 All metals and alloys are
crystalline materials.

* These Include Iron, steel, copper, brass,
bronze, aluminum, duralumin , uranium,
thorium etc.



Amorphous Material

* The teim amorphous refers to materials that

do not have regular, periodic arrangement
of atoms

» Glass Is an amorphous material



Another Classification
of Materials

Another useful classification of materials
IS _

_ Metals

_ Ceramic

_S
Polymers

Composites



 Metals

 Ferrous (Iron and Steel)
* Non-ferrous metals and alloys

« Ceramics
« Structural Ceramics (high-temperature toad bearing)
» Refractories (corrosion-resistant, insulating )
* Whitewares (e.g. porcelains)
* Glass
 Electrical Ceramics (capacitors, Insulators, transducers,
etc.)
* Chemically Bonded Ceramics (e.g. cement and concrete)



* Polymers

* Plastics
Elastomers

« Composites
 Particulate composites (small oarticles embedded in a different material)
« Laminate composites (golf ctub shafts, tennis rackets, Damaskus
swords)
* Fiber reinforced composites (e.q. fibergtass)
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» An alternative to major classes, you may divide materials
Into classification according to important properties.

» One goal of materials engineering is to select materials with suitable
properties for a given application, so it's a sensible approach.

Just as for classes of materials, there is some overlap among the
properties, so the divisions are not always clearly defined



Mechanical properties

Electrical properties
Dielectric properties

Magnetic properties
Optical properties
Corrosion properties
Biological properties



Mechanical

properties
A. Elasticity and stiPness (recoverable stress vs.

strain)
B. Ductility (non-recoverable stress vs. strain)
C. Strength
D. Hardness
E. BrittTeness
F. Toughness

E. Fatigue
F. Creep



Properties ot Materia

Electrical
Propert@sectrical conductivity and resistivity

Dielectric properties

A. Polarizability

B. Capacitance

C. Ferroelectric properties
D. Piezoelectric properties
E. Pyroelectric properties

Magnetic properties

A. Paramagnetic properties

B. Diamagnetic properties
C. Ferromagnetic properties



Pgﬁgpgﬁ C“’ 91l *i'““‘f}éi(_fﬁ x.?

Optical

p ro pe rt iléﬁefractive Index
B. Absorption, reflection, and

transmission
C. Birefringence (double refraction)

Co<osion properties
Biological

properties

A. Toxicity
B. bio-compatibility



* Toughness

Mechanical
propeties

Elasticity and stiffness (recoverable stress

VvS. strain)
Ductility
Strength
Hardness
Brittleness

Fatigue
Creep

(non-recoverable stress vs. strain)



Elasticity and

. EIastic%etc!rlnla[t'ilon IS theé deformation produced in a material
which is fully recovered when the stress causing it iIs removed.

« Stiffness Is a qualitative measure of the elastic

deformation produced in a material. A stiP material has a high
modulus of elasticity.

 Modulus of elasticity or Young's modulus is the slop of the
stress — strain curve during elastic deformation.



Ductility

* Ductility Is the ability of the material to
stretch or bend permanently without
breaking.
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Ductility

Bdt
te ,B Ductile
Ductility is a /
measure of the '
deformation at

fracture -

Defined by
percent

Stress
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elongation or
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“ In area

Strain



Strengt

h
 Yield strength Is the stress that has to be

exceeded so that the material begins to
deform plastically.

* Tensile strength Is the maximum stress
which a material can withstand without
breaking.



Hardress

e Hardness Is the resistance to penetration of
the surface of a material.



Brittlenessand Toughness

 The material Is said to be brittle iIf it fails
without any plastic deformation

e Toughness Is defined as the
energy absorbed before fracture.



Toug
sie . NNESS

Duct

Stress

Q el e (R G S ss St ot e Sl bt ” b

L
(!:
7

A
Strai
n
Toughness =  the abilityto absorb energy  up to
fracture

= the total area under the strain-stress
curve up to fracture
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Fatig

 Fatigue fatlure iIs theu fgilure of material

under fluctuating load.



Stress cycles

Different types of fluctuating stress

(a) Completely reversed cycle of (b) Repeated stress cycle
stress (sinusoidal)

Tensile stress

an ‘ (c ) Irregular or random stress cycle
MiSY 7
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The S-N curve

5 ‘
normally represented by means of 0| R e v
S-N curve, a plot of siress
against the number of cycle,

Mg steel

£ariQue ’/‘.".'

 Stress can be =2 o, 0,,..; Omin

* 0,,, R or A should be mentioned. Tvpical fatigue curves

« S-N curve is concerned chiefly with
(N > 10° cycles) =2 high cycle fatigue (

* N < 10% or 10° cycles = low cycle fatigue ( ).

* N increases with decreasing sfress /evel.

* Fatigue limit or endurance limit is normally defined at 10’
or 108 cycles. Below this limit, the material presumably can
endure an infinite number of cycle before failure.

. niferious. i . .e., aluminium, do not have fatigue limit

EE - fatlgue strength |s deﬂned at ~ 108 cycles.
M.S
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cre p

* Creep Is the time de%endent peimanent
deformation under a constant load at high
temperature.



e Extrusion

» Castin £ .
. Forai ) ~ Processing e Calcinating
orgln_g T tirs naeTor i e Sintering
+ Stamping e s e
Time, Transformations
o Layer-by-layer
growth

(nanotechnology)

Properties

characterization
Crystal structure
Defects

Physical behavior
. Response to environme

_ Microstructure
e Microscopy: Optical e Electrical
transmission « Magnetic
electron, scanning tunneling . Optical
e X-ray, neutmn, e- diffraction ,
e Cmr«nive

Spectroscopy e Deterimative



Metal



Metal

S

 Metals can be classified as

— Ferrous

e Ferrous material include iron and its alloys
(steels and castirons)

— Non-ferrous

e Non-ferrous materials include all other metals
and alloys except iron and its alloys.

e Non-ferrous materia

s include Cu, Al. Ni etc.

and their alloys sucl
duralumin etc.

n as brass, bronze,



Ferrous metals and alloys

e Steel

— Steels are alloys of iron and carbon in which
carbon content is less than 2%. Other
alloying elements may be present in steels.

e Castiron

— Cast irons are alloys of iron and carbon in which

carbon content is more than 2%. Other
alloying elements may be present in cast irons.




Stee
]

« Steels are alloys of iron and carbon in which
carbon content is less than 290. Other alloying
elements may be present in steels.

* They may be classified as

— Plain carbon steel

~ Alloy steel



Plain Carbon

These are ac-fﬁglof Iron containing only
carbon up to 2%. Other alloying elements
may be present in plain carbon steels as
Impurities.

They can be further classified as

1. Low carbon steel (< 0.3% C)

2. Medium carbon steel (0.3 - 0.5%
C)

3. High carbon steel (> 0.5% C)




Alloy
Steel

These are alloys of iron containing carbon up to 2%

along with other alloying elements such as Cr,
Mo, W etc. for specific properties.

They can be further divided on the basis of total
alloy content fOther than carbonJ present in
them as given below.

—L ow alloy steel (Total alloy content < 2H)
—NMedium alloy steel (Total alloy content 2 - 59a)
—High alloy steel (Total alloy content > 59)




Cast 1ron

 Cast Irons are alloys of iron and carbon
containing  more than 2% carbon.
They may also contain other alloying
elements.

* They can be further divided as below
—White cast iron

—Grey cast 1ron
—Malleable cast 1ron

—S.G. 1ron



Cast
lron

—White cast iron contains carbon in the form
of cementite (Fe C).

—Grey cast iron contains carbon in the form of
graphite flakes.

—Malleable cast iron is obtained by heat treating

white cast iron and contains rounded clumps of
graphite formed from decomposition of
cementite.

—S.G. iron contain carbon in the form of spheroidal

grap

nite partic

also |

es during  solidification. ]

nown as noc

lular cast iron.
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Non-ferrous Metals and
Allovs

e Non-ferrous Metals and Alloys include all other
metals and alloys except iron and its alloys.

e Non-ferrous Metals and Alloys include Cu, Al, Ni
etc. and their alloys such as

— Brass (alloy of Cu-Zn)

— Bronze (alloy of Cu —Sn)
— Duralumin (alloy of Al-Cu ) etc.



)

Classes and Properties: Vv

Distinguishing features
« Atoms arranged in a regular repeating structure (crystalline)
 Relatively good strength
* Dense
» Malleable or ductile: high plasticity
 Resistant to fracture: tough
« Excellent conductors of electricity and heat
« Opague to visible light
« Shiny appearance

» Thus, metals can be formed and machined easily, and are usually long-lasting materials.

* They do not react easily with other elements,

*One of the main drawbacks is that metals do react with chemicals in the environment,
such as iron-oxide (corrosion).

« Many metals do not have high melting points, making them useless for many applications.
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Applications

* Electrical wiring

e Structures: buildings, bridges, etc.

* Automobiles: body, cnassis, springs, engine btock, etc.

 Airplanes: engine components, fuselage, landing gear assembly, etc.
 Trains: raits, engine combDonents, body, wheels

« Machine tools: drill bits, hammers, screwdrivers, saw blades, etc.

* Magnets

 Catalysts

Examples

* Pure metal elements (Cu, Fe, Zn, Ag, etc.)
* Alloys (Cu-Sn=bronze, Cu-Zn=Dbrass, Fe-C=steet, Pb-
Sn=sotder,)
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Types of S
Ceramic

Structural Ceramics (high-temperature toad bearing)
Refractory (corrosion-resistant, insulating )

White wares (e.g. p ’

Glass

Electrical Ceramics {capacitors, insulators, transducers, etc.)
Chemically Bonded Ceramics (e.g. cement and concrete)



Classes and Properties. Ceramics

Distinguishing features
» Except for glasses, atoms are regulaily arranged (crystalline)
« Composed of a mixture of metal and nonmetal atoms
* Lower density than most metals
 Stronger than metals
* Low resistance to fracture: low toughness or brittle
* Low ductility or malleability: low plasticity
* High melting point
» Poor conductors of electricity and heat
* Single crystals are transparent

*Where metals react readily with chemicals in the environment and have low application
temperatures in many cases, ceramics do not suffer from these drawbacks.

« Ceramics have high-resistance to environment as they are essentially metals that have
already reacted with the environment, e.g. Alumina (Al,O,) and Silica (SiO,, Quartz).

« Ceramics are heat resistant. Ceramics form both in crystalline and non-crystalline phases
because they can be cooled rapildy from the molten state to form glassy materials.



Classes and Properties. Ceramics

Applications
 Electrical insulators
» Abrasives
* Thermal insulation and coatings
« Windows, television screens, optical fibers (glass)
 Corrosion resistant applications
 Electrical devices: capacitors, varistors, transducers, etc.
* Highways and roads (concrete)
* Biocompatible coatings (fusion to bone)
« Self-lubricating bearings
« Magnetic materials (audio/video tapes, hard disks, etc.)
» Optical wave guides

* Night-vision
Examples \
« Simple oxides (8'02 At,O,, Fe,0 MgO)
« Mixed-metal oxides (SrTiO,, Mg t,O4 ¥WaCurOww., having

vacancy defects.)
* Nitrides (SI, N4 AtN, GaN, BN, and TiN, which are used for hard

PR B



Polymer



Polymer

| S
* Plastics
— Thermoplastics (acrylic, nylon, polyethylene,
ABS,. ..

— Thermosets (epoxies, Polymides, Phenolics, ...

» Elastomers (rubbers, silicones, polyurethanes, ...



Two main fypes of polymers are thermosets and the/zrioplastics.

* Thermoplastics are long-chain polymers that slide easily past one another when heated,
hence, they tend to be easy to form, bend, and break.
* Thermosets are cross-linked polymers that form 3-D networks, hence are strong and rigid.

o‘*o‘
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THERMOPLASTIC



Classes and Properties: P

Distinguishing features
« Composed primarily of C and H (hydrocarbons)
» Low melting temperature.
« Some are crystals, many are not.
» Most are poor conductors of electricity and heat.
« Many have high plasticity.
A few have good elasticity.
« SOme are transparent, some are opaque

*Polymers are attractive because they are usually lightweight and inexpensive to make,
and usually very easy to process, either in molds, as sheets, or as coatings.

* Most are very resistant to the environment.

* They are poor conductors of heat and electricity, and tend to be easy to bend, which
makes them very useful as insulation for electrical wires.

MSE
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Classes anc

Applications and Examples

« Adhesives and glues

« Containers

« Moldable products (computer casings, telephone handsets, disposable
razors)

 Clothing and upholstery material (vinyls, polyesters, nylon)

« Water-resistant coatings (latex)

 Biodegradable products (com-starcn packing "peanuts’)

e Liquid crystals

 Low-friction materials (tef ton)

« Synthetic oils and greases

» Gaskets and 0-rings (rubber)
« Soaps and surfactants



Composite
S



Composite

S
. Agroup of materials foimed from mixtures

of metals, ceramics and polymers in such a
manner that unusual combinations of
properties are obtained.

« Examples are
— Fibreglass

_ Cermets
_ RCC



Composite

S
Types of Composites:

. Polymer matrix composites
. Metal matrix composites,
. Ceramic matrix composites



Distinguishing features
« Composed of two or more different materials (e.g., metal/ceramic,

polymer/polymer, etc.)
* Properties depend on amount and distribution of each type of material.
* Collective properties more desirable than possible with any individual material.

Applications and Examples
« Sports equipment (golf club shafts, tennis rackets, bicycle frames)
« Aerospace materials
* Thermal insulation
» Concrete
 "Smart" materials (sensing and responding)
« Brake materials

Examples
* Fiberglass {glass fibers in a polymer)
« Space shuttle heat shields (interwoven ceramic fibers)
 Paints (ceramic particles in latex)
« Tank armor (ceramic particles in metal)
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. i Increasing temperature
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normally reduces the
strength of a material.

Polymers are suitable only

low temperatures.

Some composites, special

aPoys, and ceramics, have
excellent properties at
high temperatures
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Figure 1.13  Skin operating temperatures for
alrcraft have increased  with the development
of Improved materials. (After M. Steinberg,
Scientific American, October, 19¢6.)



Strength-to-welight ratio

D Density I1s mass per unit volume of a
material, usually expressed in units of
g/cm or Ib/in.

_ Strength-to-welght ratio Is the strength of
a Mmaterial divided by its density; materials
with a high strength-to-weight ratio are
strong but lightweight.



TABLE 1-2 W Strength-to-weight ratios of various materials

Strength Densi Strength4o-weight
Material (Ib/in.?) (Ib/in.) ratio (in.)
Polyethylene 1,000 0.0 0.03
Pure aluminum 6,500 30 10*
o R 08 00?
Epoxy 15.0 .
Heat-treated alloy steel 00 0,1 10
Heat-treated aluminum alloy 240 14 O.% 6 X
Carbon-carbon composite ’ 0.0 10 |
Heal-treated titanium alloy 00 - 030 10
Kevlar-epoxy composite 5 0m . ?EXl 0
Carbon-epoxy composite 80,000 1.60 x 10°
1 OES A7
2 908 0.92
5 10*
L@ X
Q1s 0¥

0.0 120
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Effect of
temperature
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Electrical Conductivity
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e.g., Stress, corrosive environments, embrittlement, incorrect
structures from improper alloying or heat treatments,

USS Esso Manhattan 3/29/43
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* Understand the origin and relationship between
processing, structure, properties, and
performance.’

e Use

the right material for the right job .

* Help recognize within your discipline the
design opportunities oPered by  materials
selection.

While N&no bfo

techno
and po
techno

_ Smart- materials can make

ogical revolution, conservation and re-use methods
iIcles can have tremendous environmental and
ogical impacts!
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Without the right material, a good engineering design is
wasted. Need the right material for the right job!

* Materials properties then are responsible for
helping achieve engineering advances.

* Failures advance understanding and material’'s design.

« Some examples to introduce topics we will learn.



The COMET: first jet passenger plane - 1954
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 In 1949, the COMET alircraft was a newly designed, modern jet
aircraft for passenger travel. It had bright cabins due to large,
square windows at most seats. It was composed of light-weight
aluminum.

 Inearly 19 O's, the planes began falling out of the sky.

These tragedies changed the way were designed and the
aide materials

that were used.

 The square windows were a “stress comcenfirafor” and the
aluminum alloys used were not “strong’ enough to
withstand the stresses.

« Until them material selection for mechanical design was not
really considered in designs.



« A Concorde aircraft, one of the most reliable aircraft of our time, was
taking oP from Paris Airport when it burst into flames and crashed

killing all on board.

* Amazingly, the pilot knowingly steered the plane toward a less
populated point to avoid increased loss of life. Only three people on
the ground were Killed.

* Investigations determined that a jet that took-off ahead of Concorde
had a fatigue-induced loss of a metallic component of the aircratft,
which was left on runway. During take-off, the Concorde struck the
component and catapulted it into the wing containing filled fuel
tanks. From video, the tragedy was caused from the spewing fuel
catching fire from nearby engine exhaust flames and damaging flight
control.



Alloying and Diffusion: Advance

Alloying can lead to new or enhanced properties,
e.g. LI, Zr added to Al (advanced precipitation
hardened 767 aircran skin).

It can also be a problem, e.g. Ga is a <asf diHuser
at Al grain boundaries and make Al catastrophically
brittle (no plastic behaviorvs. strain).

Need to know T vs. composition phase diagrams for
what alloying does.

Need to know T-T-T (temp - time -
transformation) diagrams to know treatment.
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Impacting mechanical
response through:

Precipitates from alloying Al
with Li, Zr, Hf,...

Grain Boundaries

W y, fern Pallister and Rethwisch, Ed. 3
Chapter 11






Unit— 11
Chapter 4. DEFORMATION OF METALS

1. Introduction

No engineering material is perfectly rigid. When a material is
subjected to external load, it undergoes deformation. While undergoing
deformation, the particles of the material exert a resisting force. When
this resisting force equals applied load, the equilibrium condition exists
hence deformation stops. This internal resistance is called the stress.

1. Behaviour of material when subjected to load.

M=) EnasceTaas TS Sal ) e P =] [ il
B & o Lp_
| - :
| e et oot n B
| , |
I 1+ 0l i

Fig.4.1 Behaviour of material when subjected to load
Consider a bar of uniform cross sectional area A and length 1
subjected to an axial pull of P at the ends as shown in the fig.4.1.

Consider a section X-X normal to the longitudinal axis of the
bar. Due to the action of axial pull, the length of the bar is increased
from1to 1+ 6l and lateral dimension will decrease. In order to keep this
section in equilibrium, internal resistance are set up in the section. To
avoid separation of the bar at this section, the internal resistance must
be equal to the applied load. This internal resistance offered by the
section against the deformation is called stress.

4.3 Definition of load, stress and strain
Load

The system of external forces acting on a body or structure is

known as load.
Stress

The stress or intensity of stress at a section may be defined as

the ratio of the internal resistance or load acting on the section to the cross
sectional area of that sectidaternal resistance Load

Arek of cross section
Stress, f = = AreF A

tUnit—1l_ {04 41 1§




The unit of stress is N/mm?. The latest S.I unit for stress is Pascal.

1Pascal = 1Pa= 1N/m? = 1x107° N/mm?
1 Kilo Pascal=1KPa =1 x 103N/m? =1 x 1073 N/mm?
1 MegaPascal = 1MPa = 1x10°N/m? = 1N/mm?

1GigaPascal = 1GPa = 1x10° N/m? = 1x 103 N/mm?

Strain
Strain may be defined as the ratio between the deformation

produced in a body due to the appéiﬁg r{Sg‘.’n"H.”HQﬁs%"ﬁ"”"’ dimension.
Strain, e =

Original dimension
The strain is only the ratio between the two same quantities
and hence it has no unit.

4. Classification of force system
According to the applied load, the force system is classified as
follows:
1) Tensile stress 2) Compressive stress 3)
Shear stress

41 Rending stress 5) Torsional stress

1) Tens A e L L e L ] Fasg'

1+l !
Fig.4.2 Tensile stress
When a load is such that it tends to pull apart the particles of
the material causing increase in length in the direction of application of
load, then the load is called tensile load. The resistance offered against
thigthdseeskdd tensile stress. The corresponding  strain is called tensile
strain.

Axial pull P 2
Tensile stress, f = = = —
2i Area of cross section

Increase in length (N/mm)

Tensile strain, e = =
Original length _6l A

tUnit—1l_ {04 42 i




2) Compressive stress

Fig.4.3 Compressive stress

When a load is such that it pushes the particles of the material

nearer causing decrease in length in the direction of application of load,

then the load is called compressive load. The resistance offered against

this decrease in length is called compressive stress and the

corresponding strain is called compressive strain.
Axial push

2

thifmm )

Compressive stress, f = = -
Area of cross section

Decrease in length 4
Original length 6l i

Compressive strain, e =

3) Shear stress

When a body is subjected to two equal and opposite forces
acting tangentially across the resisting section, the body tends to be
sheared off across the cross section. Such forces are called shear force.
The stress induced in the section due to the shear force is called shear
stress and the corresponding strain is called shear strain.
Total shear force P B

T

"~ Area of resisting dectio

A Change in
dimension Original dimension

Shear stress, q =

Shear strain, e =

4) Bending stress

When a beam is loaded with some external forces, bending
moments
and shear forces are set up. The bending moment at a section tends to
bend or deflect the beam. Internal stresses are developed to resist the
bending. These stresses are called bending stresses.

5) Torsional stresses
When a machine member is subjected with two equal and
opposite couples acting in parallel planes, then the member is said to
be in torsion. The e P i
. srdlnit=1l_glly 43
stress induced by this torsotriscalled torsiomotstress.




4.5 Hooke’s law
Hooke’s law states that stress is directly proportional to strain
within elastic limit.

. . Stress
i.e. stress X strain (or) Strain - A constant

For tensile and compressive stresses, the constant is known as
Young’s modulus or modulus of elasticity.

For shear stress, the constant is known as modulus of rigidity.

6. Young’'s modulus or modulus of elasticity

The ratio of stress to strain in tension or compression is known
as Young’s modulus or modulus of elasticity. It may also be defined as the
slope of stress - strain curve in elastic region. It is denoted by ‘E” and
the unit is N/mm?.

Young’s modulus is the measure of stiffness of the material. A
member made of material with larger value of Young’s modulus is said
to have higher stiffness. The stiffer materials undergo smaller
deformation for a given load condition.

6. Working stress

The maximum stress to which the material of a member or
machine element is subjected in normal usage is called working stress.
It is also known
as allowable stress or design stress. To avoid permanent set, the working

stress is kept less than the elastic limit. yjtimate stress
Factor of safety =

6. Factor of safety and load factor Working stress

The ra¥10 0 Oftf%%?e s()tfrg:s’lgetél \X/%H%Sngg esgslll'ls Ao\ r{ S c(tjc%%r; 3]‘

high as%j?eg in case of timber subjected to suddenly ap led lo
value of factor safety depends on the following factors.

1) The reliability of the material

2) The accuracy with which the maximum load on the member is
determined

3) The nature of loading

4) The effect of corrosion and wear
5) The effect of temperature

6) Possible manufacturing defects.
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Load factor: The ratio of ultimate load to working load is called
load factor.
Ultimate load

Load factor =
Working load

4.9 Linear strain or longitudinal strain
Linear strain or longitudinal strain is defined as the ratio of the

change in length to the original length.

. . . Change in length 61
Linear or longitudinal strain, e = E

Original length 1

4.10 Deformation due to tensile or compressive force
Consider a bar subjected to an axial pull or push at the ends.

Due to this load, deformation occurs in the bar.
Let, P = Load acting on the bar
1 = Length of the bar
A = Cross sectional area of the bar
f = Stress induced in the bar
e = Strain in the bar
61 = Deformation of the bar and
E = Young’s modulus of the material of the bar

According to Hooke’s law,

Stress _ g
Strain
(1)
Stress, f = Load _P
Area
Changedp length

Strain, e = Mriginal length 1

Substituting the values of stress and strain in
equation (1)

(y
Br 2 -
6l A
6l (1)
_Pl |
6= | on 61=% Bei
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4.11 Bars of varying sections

Consider a bar having different cross sections for different
length as shown in the fig.4.5. Let this bar is subjected to an axial pull
or push at the
ends. It may be noted that each section in the bar is subjected to the
same axial push or pull. Due to this variations in cross sectional area,
the stresses, strain and hence change in length for each section are
differe /—Al

A2
are cal ' //— /- A3 1ges in

length ¥ gths of

P P
the sec _P | @ @ @ I =

I 12 13
Fig.4.4 Bars of varying sections
Letl,, 1, 1;and Ay, A,, A;be the length and area of the sections of

1, 2, 3 respectively.

Change in length of section 1, 6l1= AE
Pl,
2 BE A
Similarly, 61 = ; 6l = 3
Total deformation ofthe ar,6l=61,+61,+61;
Pl PL[p il
= 3 E (A1 A3)
If the modulus of elastlcnxAgﬁliffgrzent for different sections,
then e
6l=P .
1 1 *
2 2
+ 13lag

4.12 Shear stress and shear striin
When a body is subjected to t\'/(\s‘/oEeaqual and opposite forces

acting tangentially across the resistin{gA s%ction, the body tends to be

sheared off

across the cross sectlonl_Such_fo.t:ces arecalled shear force. The stress

induced in the section d'tr%%ﬁ‘re-si'llear 'fcrlclegrstalled shear stress and

the




corresponding strain is called shear strain. In shear, the strain is
measured by the angle in radians through which the body is distorted
by the applied force.

Consider a cube ABCD of side 1 fixed at the bottom face DC. Let
a tangential force P be applied at the face AB. As a result of this force,

the cube i . P , angle ¢ as
shown in fig o ’} B ___B,
/ /
// //
\¢// .i//
| . /
/ /
/ /
/ /

/
o EEL LT HE VLT ST
D C

Fig.4.5 A body subjected to shear force
Change inlength DA"-DA
Original length ’ DA siH(l}‘)Aéqd) .
( ¥ For small angle, sin ¢ =

Shear strain

4.13. Modulus of rigidity or shear %I)odulus
The ratio of shear stress to shear strain within the elastic limit
is known a modulus of rigidity or shear modulus. It is denoted by N or G

or C
and the unit is N/mm?. Larger is the modulus of rigidity, lesser is the

distortion when Muastishis efibigictity, to sheag Ség$ssst'rain
ear stress

14. Lateral strain
It is the ratio of the change in lateral dimension to the original
dimension. Lateral strain is induced along the direction perpendicular to

the
direction of application of load.

14. Poisson’s ratio

The ratio of the lateral stiain to the corresponding longitudinal
strain within Re4ssReiatie callegPoisson's Tatio Hesrgepresented by n
(nW) @7 L8Rt of the material, PoisdoHt@iBtio lies betangitadis to 0.33.

nal strain
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4.16 Volumetric strain
When a body is subjected to an axial pull or push, it undergoes
change in its dimensions and hence its volume will also change.

The ratio of change in volume to the original volume is known
as

: : Change in volume
volumetric\jgifetric strain, e, = =

Original volume &Y~

4.17 Bulk modulus

When a body is subjected to three mutually perpendicular
stresses
of same magnitude, the ratio of the direct stress to the corresponding
volumetric strain is known as bulk modulus or bulk modulus of elasticity.
It represents the resistance of a body against volumetric strain. It is

usually denoted by K. Di
Y Bulk n}'llodulus, K= . h we;ct
Sixfsmetric strain
EV

4.18 Volumetric strain of various sections

1) Rectangular bar

7L b

Fig.4.6 Volumetric strain in rectangular bar
Consider a rectangular bar of length I, width b and thickness t and
is subjected to an axial tensile force P as shown in fig.4.7.

Let 61, 6b, 6t be the changes in dimensions due to the applied

load.
Omigippl volume, ¥;=(b % &b)(t + 6t)(1 + 6])
volume, = (b + 6b)(tl + t6] + 16t + 61 6t)

=(btl+bt6l+bl6t+b6l6t+tl6b+1t6l6b+16t6b+6b 6l 6L)
Neglecting the higher powers of 6/, &b and 6t,
Final volume, Y,=btl+bt6l+bl6t+tl6b
Change in volume, 6Y = Final volume - Original volume
=btl+bt6l+bl6t+tl6b-btl
=btdl+blot+tlob
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) ] Change in
Volumetric strain =

volume
6Y _ b thligibdl6tohtrhéb _ 61 | 6t . 6b
Y btl 1
B til =L itudinal t
ut, strain = e 1— onglu 1na b

ot_ = Lateral strain = - L e (~ Thickness
decreases) t m

b _ | ateral stram =-1e (~ Width

decreases) b~ m
Volumetric strain = e - 1 e- 1 e=e- 2e
m m m
Woen-2

Change in volume, [6Y =¢ (1 - mZ) Y

2) Circular bar
P

——(y(f—— /

I
Fig.4.7 Volumetric strain in circular bar

Consider a circular bar of diameter d and length 1 and is
subjected to a tensile force of P as shown in fig.4.8.

Let 6d and 6l be the change in dimension due to the applied

Origll?lgil'volume, ; =¥di

v 4
Final volume, 2=aﬂd+6@2xﬂ+6m
Y
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=Y4[(d2+2d6d+6d2) x (1+61)]
=i 2(dl+d6l+2dj6d+2d6l6d+46d +6d 6l

Neglecting the higher powers of 6d and 6/
Y,= ¥4d21 +d26l + 2 d16d)

Change in volume, 8V = Final volume - Original volume

=¥ d21+d%6l+2d16dy-Ld2 4
( 4 )

=¥ d%6l+2dl6d
4l )

6Y Change
Volumetric strain, e, = v voTume
v Origin
26]+2d16dy 8
=4 ﬁivo Ume ) _ d?el
Y| d?l
4 2dled
- 6_1 + 2 6d * d21
|
6ol _ S o
But, 1= Lgngltudmal strain = e
od _ ateralcftrain --1, (~~ Diameter
decreases) m
Volumetric strain, ov._ e+2 @ 1 ey=e (1 - Z)
\% m

Change in volume, (o _ (1 B m)zY

4.19 Relation between Young’s modulus (E) and modulus of rigidity (N)
4q

D s (53 D D' C iy
T —~
/ -7
&/ o8 o
i 7 /
‘ll q a ,’ o ,/
/ 7 /
B /
| /
A - B A B

q
Fig.4.8 Relation between E and C
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Consider a square element ABCD of side ‘a’ and unit thickness.
Let the element is distorted to ABC'D’ due to shear stress ‘q’ acting as
shown in the fig.4.9. Due to the shear stress, the diagonal AC will be
elongated and the diagonal BD will be shortened.

. . . q . 1 q
Linear strain of diagonal AC, = B ;1-( EJ

Linear strain of diagonal AC,% 1 +—1 —————
E (1)
Let this shear stress q cause shear strain ¢ resulting in the
diagonal m)
AC to distort to AC'. Change in
Strain along diagonal AC =
length
r_ iginad length
_ACT-AC_ Keiging 2 AC = AP)
AC AC
PCr
=— ——=-- 2
= e
From triangle CC'P, P C' = CC' sin=
450 = CC .

ac=VapZz+cpz=Yzcpz=V2 ch V2 (+ AD = CD)

Substitute the values of PC’ and AC in equation (2)

Linear strain of diagonal AC = C(_: — - .1
Ll Vivoep 20D
: , _CC_CC . peo
From triangle CC’B, tan ¢ = = (~BC= CP%D

BC CD
Since the angel is very small, tan ¢ = ¢

2 p=CC
CcD

9 cc q
¢~ +Shearstrain, ¢ =)

=~ Linear strain of diagonal AC, = 1q
cp ( 2C

Combining equation (1) and (3)
94 1+ l = 1_q_
E( 2C

m)

1+ 4=
O br=2c 1
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4.20 Relation between bulk modulus (K) and Young’s modulus (E)

v
P
p_Z
| g
| .y
P ' P
\N—=-—-1t = : —_——\
|
/’L— ————————
P/// 1
el P |

Fig.4.9 Relation between K and E

Consider a cube subjected to three mutually perpendicular
tensile stresses of equal intensity as shown in fig.4.10.

Let, f be the stress acting on each face of the cube.

The strain in X direction, =z _ ]ty

m(E- 2 (f =f =f =

Similarly, €

_ y
=f 1-2_ a]lde-_f PR 7
Y g mi =t gy
. .y 6Y f
Volumetric strain, =— _ - 2 _
ﬁﬁﬂY_ez+e +e &ﬁJ]—El-(-
Bulk modulus. K Y Direct )
ulk modulus, K = m
Votthfidtric
SHAMLt f

$ Volumetric strain

_ BU&Shodulus = K

f f 3 2 _1
O L S
2
m) 13;%1((1—%])




4.21 Relation between E, C and K
1
We know that, p _ 5 (L+ oo 1)

Equating (1) and
(2) 1 2
2C(1+ }531((1—— 1}1

6K + 26—
Substituting the.valye Mquation
(1) i (ﬂ 6K+ 2C
m
_ac 6K+ 2C+3K-2C
e ( 6K 1 2C

9K
_20 —2—
2( )

E=268k+c

3K+C

4.22 Composite bars
A composite bar may be defined as a bar made of two or more

different materials joined together in such a way that the system elongates

or

contracts as a whole equally when subjected to axial pull or push.
Consider a composite bar made of two different materials as

shown in the fig.4.11
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LLL

R
N

LLULLLLLLLLL L,

N\’
7777

tr

Fig.4.10 Composite bar

Let, P = Total load on the bar
1 = Length of the bar
A, = Area of bar 1
E; = Young’s modulus of bar 1
P; =Load shared by bar 1 and
A,, E,, P,are corresponding values for bar 2

According to the definition of composite bar,

ITHE STRAIN IN BOTH THE MATERIAL IS SAME.

ie. fl= fa o
Eq
E, FEi
2 =
&
The ratio%—lig knoyn as modular ratio
2
Total load, P = Load shared by bar 1 + Load shared by bar
2
P=P,+P,
A1+ A,
= % 2 1 f
A+
]51]‘%21417"F E; f2A;
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f2 (E1A1 + EzAy)
E,
E,
—_— P ﬁ_
.fZ' (E].A]_ + E2A2
E; Ay
Py=fA;=P (E A-r-—lﬁjlsr)—

pP=

Similarly, 2 2
E;Aq

P,=fiA;=P
Note: The foll wllnglpo]ints H‘%oéﬂhlEbeA 1Jemember bd while solving the
problerps in composite bar§ 5

1) Extension or contraction of the bar being equal and hence the
strain is also equal

2) The total external load applied on the composite bar is equal to
the sum of the loads shared by the different materials.

23. Temperature stresses and strains.
When the temperature of a body is increased, it undergoes
deformation leading to increase in dimensions. On the other hand the

body
contracts when its temperature is reduced.

When a body is allowed to deform freely under increased or
reduced temperature condition, stresses are not induced. If the
deformation is prevented completely or partially, stresses will be
induced in the body.

The stresses induced in a body due to change in temperature
are known as temperature stress or thermal stress. The corresponding

strain in thna hadwric bnanm ac fnamnaratiiva ctrain v thavrnan~l ctrain

{ L I'I—>| "

0%

A B

23. Exp ain

'
T
|
|
|
|
|
I
|

— |

C D D'

PAANNRRERRRNY

Fig. 4.11 Temperature stress and strain
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Consider a body subjected to an increase in
temperature. Let, | = Original length of the body

T = Increase in temperature and
a = Co efficient of linear expansion

Increase in length due to increase of temperature, 61 =a Tl
If both the ends of the bar are rigidly fixed so that its expansion is
prevented, then compressive stress is induced in the body.
Change in lengt
Strain, e = #gr]aﬂf-a
Original length 1

Stress, f = Strain x Young's modulus = aTE

If the supports yield by an amount equal to A, then

the actual expansion that has taken place, 61 = aTl - S
. Change in lengthm _ o =
Strain, e = Original length 1 =alT-> 1
Stress, f = Strain x Young's modulus = (al Ry
1

4.25 Strain energy or resilience due to axial load

When a body is subjected to an external load, there is
deformation
of the body which causes movement of the applied load. Thus work is
done by the applied load. This work done is stored in the body as
energy and that is why when the load is removed, the body regains its
original shape and size behaving like a spring. This energy stored in the
body by virtue of strain is called strain energy or resilience.

Analytical derivation of strain energy
Consider a body of length 1 and uniform cross section A and is
subjected to an external load P . The deformation takes place from zero

to final value of the magnitude, if the load is increased gradually.

Consider an elemental strip of thickness d6 and at a distance §,
from the origin. The work done by the external load P for the

displacement of d6 is given by,
6w = Load x Displacement=P.d6 -----------=- (D
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(-

=

-]

-l

O - < X
o1 I do 1__

- (s‘

Deformation, 6 ——=—
Fig.4.12 Strain energy

We know that, deformation, 6 _Pl

AE
p_AE6

Substitute the value of P in equation

(1)
ew=2E ¢ d6 )
1 2 2
Totalworkdone:] 6 F A_IE [6_] E A_lE [6_]
6. é = 2 . 2
Substituting 6= ﬂ_
E
ﬂ 2
Total work done = AE (E)
| [ J
212 2
=2 & lez = - f—x Al =
1 2] 2E x Volume

But total work done on the bar = Strairpgnergy stored in the
bar

** The strain energy U=

= X
stored, JLnLu.L
2E
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4.26 Proof resilience
The maximum strain energy which can be stored in a body

without permanent deformation is called its proof resilience. If p, . be

the maximu f

stress at the ¢lpstigAitithes =

Zaz
m
—  xVolume

2E

4.27 Modulus of resilience
The maximum strain energy which can be stored in a body per

unit volume jsknown as modnlus of regilience.
__az

Modulus of resilience = ™
2E

4.28 Instantaneous stresses due to various types of loads

1. Gradually applied load
Consider a bar subjected to a gradually applied load.

Let, P = Gradually applied load,
A = Cross sectional area of the bar,
1 = Length of the bar,
61 = Deformation of the bar
E = Young’s modulus of the material of the bar and
f = Instantaneous stress induced in the bar

Since the load is applied gradually, the magnitude of he load is

increasing from zero to the final value P.

Average load = Minimum load + Maximum load _0+P _P

2 2 2
Work done by the load = Average load * Deflection
=L el
2
2
The strain energy stored in the bar, - —__
N xAl 2E
But strain energy stored = Work
done 2
f_ X A l = E
2E 2

We know that, 6l élﬂ_
E
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2 p
—x

Al= x
f)(A:P

P
A

1 N|‘—_w

—n
1
v

Instantaneous stress produced due to gradually applied

load,
2. Suddenly applied load

Consider a bar subjected to a suddenly applied load.
Let, P = Suddenly applied load,

A = Cross sectional area of the bar,

1 = Length of the bar,

61 = Deformation of the bar

E = Young’s modulus of the material of the bar and

f = Instantaneous stress induced in the bar
Since the load is applied suddenly, it is constant throughout the

process of deformation of the bar.

Work done by the load = Average load * Deflection = P x 61

2
The strain energy stored in the bar, - f_
U
But strain energy stored = Work XAl ZE
done fZ
—xAl=Px6]
2E

We know that, 6/ 6l = ﬂ_
E

j:Z
" Al=Px 2E

§XA:P

X

m|‘a

f:ZXB
A

— |
Instantaneous stress produced due to suddenly applied f=2x

load,

3. Impact by gravity
Consider a bar in which a collar is attached at the bottom. Let

this bar is subjected to a load applied with impact as shown in the

fig.4.14. {Unit—1_10§_4.19 }




YL

Load, P\E §

I‘ /—(‘ull;n'
: ] |
ol I H
| (Sl el S
S APTRR -

Fig.4.13 Impact by gravity
Let, P = Load applied with impact
A = Cross sectional area of the bar,
1 = Length of the bar,
6] = Deformation of the bar due to the load
E = Young’s modulus of the material of the bar and
f = Instantaneous stress induced in the bar
h = Height of fall of load before it strikes the collar

Work done by the load = Average load * Distance moved

=P (h+6l)
2
The strain energy stored in the bar, — f_
U
But strain energy stored = Work XAlL2E
done Al=P (h+6l
X = +
T (h + 61)
We know that, ¢) - ﬂf
2
. f— x Al =f—}’-
h2+ .
= ) <5
E
Multiply by% on BAth §iﬁgg+ Py 2E
f2 %Al x 2E YR L
ot T
A Al
Al
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P
fr=2Ear ()

F2-2f (5

Al
2
Add P “ 2EPh on

bothSides
A? p2

P
f2 2f(A) ¥ A2=—

2EPh , P?

Al A2
N ,P? 2EPh
(AT A2 Al

Taking square root on both sides, we
get,

6l is very small as compared to h,
then Work done=Ph

But strain energy stored = Work done

2
f— x Al=Ph
2E
f2= 2EPh
Al
2EPh
4) Impact by shock { Al

Consider a body subjected to a shock
load Let, A = Cross sectional area of the bar,
1 = Length of the bar,
61 = Deformation of the bar due to the load
E = Young’s modulus of the material of the bar and
f = Instantaneous stress induced in the bar

The strain energy is stored in the bar as kinetic energy.
2

=~ Shock energy = mv
Where, ™ = Mass of the body, v = Velocity of the body
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But strain energy stored = Shock
energy

2
f—XAl= My 2
2F o

By using the above equation, we can find out the instantaneous

stress induced in the bar due to shock load.
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(SOLVED PROBLEMS)

STRESS, STRAIN, ELONGATION AND YOUNG’S MODULUS

| Example : 4.1| (Oct.92, Oct.95, Apr.13, Apr.15)

A circular bar of 20mm diameter and 300mm long carries a tensile
load of 30KN. Find the stress, strain and elongation of the bar. Take E =
2 x 10°N/mm?.

Given : Diameter of the bar, d = 20 mm
Tensile load,P = 30 KN=30x 103N
Length, 1 =300 mm
Young’s modulus, E = 2 x 10> N/mm?

To find : 1) Stress, f 2) Strain, e 3)

Solution : Elongaltion, ol

Area, A=Zxd2 =2 x 202 =314.159 mm?
d

J
4
« FArea v/mm

Strain, e = 30 Iess _J -
" T g5 493 14 ¥8ng’s Modutes—— | 4. 774 x 10°

E
Elongation, 8l = e x 1 = 4.774 x 10~*x 30?0@1

Result: 1) Stress,f =95.493 N/mm? 2) Strain, e =4.774 x 1074
3) Elongation, 61 = 0.143 mm

| Example: 4.z| (Apr.14)

A mild steel rod of 25mm diameter and 200mm long is
subjected to an axial pull of 75KN. If E = 2. 1 x 10°N/mm?, determine
the elongation of the bar.

Given : Diameter of the rod, d = 25 mm
Length,1 =200 mm
Load,P = 75KN=75x103N
Young’s modulus, E = 2.1 x 105 N/mm?
To find : 1) Elongation, 0l
Solution :
Area, A = f—lx d? =2 x 252 = 490.873 mm?

. _P1 75 x
Elongation, dl = A6 200 2905 a% 0.1455 mm
[ Result : 1) Elongation 6t % 61455 mm |
TURE=T™ P41




(Apr.02)

A rectangular wooden column of length 3m and size 300 x 200mm
carries an axial load of 300KN. The column is found to be shortened by
1.5mm under the load. Find the stress and strain.

Given : Length of the column,] =3 m =3000 mm

Width, b =300 mm

Depth, d =200 mm

Change in length, 6] = 1.5 mm
Load,P = 300KN=300x103 N
To find : 1) Stress, f 2) Strain, e
Solution :
Area,A=b xd =300 x 200 = 60000 mm?

B e —
rea

ol =_1.5
Strain, e = Change 30 CendihEo—

>

000ginal length 1 4100005
3068
|Result: 1) Stress, f=5N/mm?  2) Strain, e = 0.0005 |
Example : 4.4 (Oct.93, Oct.14)

A brass tube of 50mm outside diameter and 45mm inside
diameter and 300mm long is compressed between end washers with a

load of 24.5KN. Reduction in length is 0.15mm. Determine the value of
E.
Given : External diameter, d; = 50

mm Internal diameter, d, =
45 mm

Length,1 =300 mm
Load,P =24.5KN=24.5x 103N
Change in length, 61 = 0.15 mm

To find : 1) Young’s modulus, E
SOIUtiOﬂArea’ A=2 (d 2 ) 1 502— 45 ) = :
4 10 * 7373064
We kpow that, 3l = 2 ; ? o
% $ O
"'E=1§_é§x3m—m= [1.3135 x 10° |
N/mm?*
[Result : - 1) Young’s modulds;¥ = 1.3135 x 105 |
N/mm2 64 X 0.15

=
iUnIt—II i E P4.2 ]




| Example : 4.5| (Apr.88)

A rod of hydraulic lift is 1.2m long and 32mm in diameter. It is
attached to a plunger of 100mm in diameter working under a pressure
of 8 N/mm?Z. IfE = 2 x 105N/mm?, find the change in length of the rod.

Given : Length of therod, 1 = 1.2 m = 1200 mm
Diameter of the rod, d = 32 mm
Diameter of the plunger, D = 100 mm
Pressure on the plunger, p =
8N/mm?
Young’s modulus, E = 2 x 10°N/mm?

To find : 1) Change in length, 0l
Solution :

ARG LB R IIBH = B pzt; 1t 39025085435

Load on the rod, P = Force on the plunger
4 Pressure x Area of the
plunger
Change in length, 6l = el 8—%99%%@6%%%%.8

AE 804248 x 02 x
[Result : 1) Change in lengtH @f the rod, 61 =0.469 mm |

WORKING STRESS, FACTOR OF SAFETY

| Examp[e . 4_5| (Oct.92, Oct.94, Apr.01, Oct.02, Oct.03, Apr.05)

A cement concrete cube of 150mm size crushes at a load of
337.5KN. Determine the working stress, if the factor of safety is 3.

Given : Side of the cube, S = 150 mm
Crushload, P =337.5 KN =337.7x 103N
Factor of safety = 3

To find : 1) Working stress, f,.
Solution :

Area, A= s2 =150 x 150 = 22500 mm?2
Crushload P ,
337.32500°= 15 N/mm
Factor of safety = JAB.E@M 0
Working
stress
fgnit—T1  ["P4.37]

Ultimate stress, f,, =




_ Ultimate stress _ 15

== = 2
Factor of safety

|Result : The working stress, f,,= 5 N/mmé |

| Example : 4.7| (Aor.95)

A hollow cast iron column 250mm diameter with a wall
thickness of 25mm is subjected to an axial load. If the ultimate crushing
stress for the material is 480 N/mm?, calculate the safe load for the
column using a factor of safety of 3.

Working stress, f,.

Given : External diameter, d; =250 mm
Wall thickness, t = 25 mm
Ultimate stress, f, = 480 N/mm?
Factor of safety = 3

To find : 1) Load, P

Solution :
Internal diameter, d, =d; - 2t =250 - (2 x 25) = 200

2

Area, R (g, ) 2, 250°-200 )  =17671.459

mm

T

 Woping s AL s -480 -0

y

Also, working:stress =Load_P

f

T Area

% Load, P = Working stress x

3
Area = Y60 x 17671.4590 =[2827433.44 N

[Result: 1) Load, P =2827433.44N |

| Example : 4.8| (Apr.96)

The ultimate stress for a hollow steel column which carries an
axial load of 2000KN is 480N/mm?. If the external diameter of the
column is 200mm, determine the internal diameter. Take factor of

satety as 4. A
iven:  Ulumate stress, J, = 460 N/mm

Load,P = 2000 KN =2000 x 103 N
External diameter, d; =200 mm
Factor of safety = 4

To find : 1) The internal diameter, d,

.
TURE=Tr P42




Solution :
- Ultimate stress _ 480 _ 19 N/mm2

Factor of safety 4
_Load _P

Area
f Load

Area = - =
_Working 12

Let d, be th8tirgggnal diam Bth@column,
then _ 2
Area, A= ﬁ (4 )
_ 2
16666.666 =4 ¢ 20 - d,)

2

Working stress, f,.

Also, working stress,

= 16666.666 2

21220.662 =40000 -

2
d; d, =18779.338
d,="18779.338 = |137_033 mm|
|Result: 1) The internal diameter, d, = 137.038
mm

STRESS - STRAIN DIAGRAM

| Example : 4.9| (Apr.92)

The following observations were obtained on a mild steel
specimen having an initial gauge length of 50mm and initial diameter
of 16mm: Load at yield point = 60KN; Maximum load = 88KN; load at
fracture = 64KN; Distance between gauge points after fracture = 68.8
mm; Diameter of the neck = 9.2mm. Determine the 1) yield stress, 2)
ultimate stress, 3) nominal stress at the fracture,

4! percentage elongation and 5) percentage reduction in area.
ven : Tnital diameter, d = 16 i

Diameter of the neck, dy=9.2 mm
Initial gauge length, 1 = 50 mm
Distance between gauge points
after fracture, I, = 68.8 mm
Load at yield point = 60 KN = 60 x 103N
Maximum load = 88 KN = 88 x 103N
Load at fracture = 64 KN = 64x 103N

To find : 1) Yield stress 2) Ultimate stress
3) Nominal stress at fracture 4) Percentage of
5) Percentage reduction in  elongation
area

A
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Solution :

Original area of cross section, A =4ﬂ x d2 =2 x 16%2=201.06 mm?

Area of neck after fracture, § =2 x d,? ﬁ 2=
x 9.2 = 66.48 )
) Load at the yield
Yield stress = ———
OripMiBEarea of cross
section 3
= M = [298. 42
201.0 N/mli{)[ _
Ultimate stress 6—— aximum
load Original area of cross

_ 890

201.0
; M%ad at the fracture
Maximum stress # fracture =——
Original area of cross

_ etbialo® | ey
) 2010

(-0 "(e8.8- 58‘/ mm
Pecentage elongation = ] x 100T x 100 = |37.6%
(A-Ap)

Pecentage reduction in area = x 100

(20106-6648) 66 o4%

= 201.0 x 100

Result : 1) Yield stress = 298.42 N/mm?
2) Ultimate stress = 437.68 N/mm?
3) Nominal stress at fracture = 318.31
N/mm?
4) Percentage of elongation =37.6 %
5) Percentage reduction in area = 66.94 %
BARS OF VARYING CROSS SECTIONS

|[Example : 4.10] (0ct.92, Oct.04)

A stepped bar of 1m length is composed of two segments of
equal length. The first segment is 20x20mm square and the other is
40x40mm square in size. Calculate the elongation of the bar, when the
maximum tensile stress in the material is 200N /mm? due to an axial
tensile force. Take E = 2 x 10°N/mm?,

Given : Area of the first segment, A; = 20 x 20 =400
mm?

Area of the second segment, A, =40 x 40 1600 mm?
Maximum stressrigﬁﬁe_—ﬁqla@rial,—fﬁg%g—ﬁ\l /mm?




Young’s modulus, E = 2 x 10° N/mm?
Length of the first segment, 1, = 500 mm
Length of the second segment, I, = 500 mm

To find : 1) Total change in length, 0l

Solution :
Maximum tensile stress occurs only in the segments having small
area of cross section. So, the stress in the first segment, f;=200 N/mm?
Load on the material, P = f; x A; = 200 x 400 = 80000 N
Pl Pl,
Total change in length, 6l “AE * A,E
— 80000 x 500 | _80000 x 500

400 %2 x 1051600 x 2 x 105 0. 625 mm

|Result: 1) Total change in length, 61 =0.625 mm |

[Example : 2.11 (0ct.98)

A steel bar is 500mm long. The two ends are 35mm and 25mm
in diameter and each end portion is 150mm long. The middle portion is
200mm long and 20mm in diameter. Calculate the total extension in the
bar if it carries an axial pull of 30KN. Take E=200KN /mm?2.

Given : Load,P = 30KN=30x103 N
Diameter of the first portion, d; = 35 mm
Length of the first portion, I; = 150 mm
Diameter of the second portion, d, = 20 mm
Length of the second portion, 1, = 200 mm
Diameter of the third portion, d; = 25 mm
Length of the third portion, 13= 150 mm
Young’s modulus, E = 200 KN/mm? = 2 x 105 N/mm?
To find : 1) Total change in length, 6l
Solution :
Area of the first portion, A1 = ﬂ4x d2=2x352=962.113 mm?

Area of the second portion, Al= ﬂ4¢f dz2==4 2202 =314.159 mm?

Area of the third portion, & = ﬂ4x dz2==4 . 252 =490.874 mm?

3 Pl g 1,
3
Total change in length, ol = A E + ﬁzg
3
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P i s

ela, = a3l
3
_ 30x10% _150 200 150 e

L2, 105[962113
[ Result : 1) Total change in length, 617503547 |

|E)2;mple : 4.12|

(Oct.98)

A steel bar is 450mm long. The two ends are 15mm diameter
and have equal lengths. It is subjected to a tensile load of 15KN. If the
stress in the middle portion is limited to 160N/mm2, determine the
diameter of that portion. Find also the length of the middle portion if
the total elongation of the bar is 0.25mm. Young’s modulus of the

material is given as E = 2 x 10°N/mm?.

Given : Total tlengen of the par, I = 450 mm
Diameter of two end portions, d; = d, =15 mm

Totalload,P = 15KN=15x103 N
2

Stress in the middle portion, f, =160 N/mm
Total elongation, 8l = 0.25 mm
Young’s modulus, E = 2 x 10° N/mm?

To find : 1) Diameter of the middle portion,

dz -
015 mm :'I_.w 015 mm
b X | — 450-2x | X !
Fig.P4.1 Bar of varying sections [Exapmle 4.12]
Solution :
Let d, be the diameter of the middle portion
P
Then, f, =+
AN
3
= A, :fg 15x10° =93.75 mm?
2 16

Also, A ,= i 22 0
93.75=21xd2
4

xd
2_ . _ |
d,;”=119.366; O d,= |10.925 mm
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Area of the end portion, A1= A =2 Zd 2=2x152=176.715 mm?

Let, the length of the end portion, 1, =13=x
Length of the middle portion, 1,4 450 - 2x
1
| P
Total elongation of the bar, 0l = P [ R
0.25 = 15x10° X_A
2T 105 1767150 Sy

0.25 = 0-075[0-0056588+ 437460213333+

0.0056588x]

3.3333333=4.8-0.0100157x

« = 14666667 _ 1 4¢ 437
0.0100157

Length ofthismidgleppreian7),-f155012@mm|

Result : 1) Diameter of middle portion, d,=10.925 mm
2) Length of middle portion, I, =157.126
mm

SHEAR STRESS

[Example : 4.13] (Apr.93)

A steel punch can be worked on to the compressive stress of
800N /mm?. Find the least diameter of the hole which can be punched
through a steel plate 28mm thick if the ultimate shear stress for the
plate is 360 N/mm?2.

Given : Compressive stress on punch, f= 800 N/mm?
Thickness of steel plate, t = 23 mm
Shear stress, f; =300 N/mm?

To find : 1) Least diameter of hole, d

Solution :
Let the least diameter of the hole = d
Diameter of the punch = Diameter of the hole = d
Compressive force from the punch = Compressive stress x
Area of the punch
=P x%xd?=800x%xd?
4 4

=628.318 d?

A
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Resisting force from the plate = Shear stress xResisting area of the
plate
=f;xadt =300xuyuxdx23
=21676.984d
We know that,

Compressive force from the punch2=1f6{%s6i59ti8r}}g force from the plate
628.318 2= , o547
[ Result : 1) The least diameter of the hole, d = 34.5|

mm

LATERAL STRAIN, POISSON’S RATIO, VOLUMETRIC STRAIN,
ELASTIC CONSTANTS

|[Example : 4.14] (Apr.01, Oct.04, Oct.13, Apr.17)

A steel bar of 25mm diameter and length of 1m is subjected to
a pull of 25KN. If E = 2 x 10°N/mm?, find the elongation, decrease in
diameter and increase in volume of the bar. Take 1/m = 0.25.

Given : Diameter of the steel bar, d = 25 mm
Length of the steel bar,1=1 m = 1000 mm
Young’s modulus, E = 2 x 105 N/mm?
Poison’s ratio, 1/m = 0.25

To find : 1) Change in length, 81 ~ 2) Change in diameter,
3) Change in volume, 6V od
Solution :
Area of the steel bar, A = ﬁ x d2=2 x 252=490.874 mm?

Volume of the steel bar, V= A x 1 =490.874 x 1000 = 490874 mm?3

.. 25x10° __ _ ) 5465 x 10°*

- 490.874 x 2 x 10°

Change in length, 0l = Loggitudinal strain x

Length = 2.5465 x 1074 x 1000 =
Lateral strain

Longitudinal strain

Longitudinal strain, e

Poisson's ratio =

Lateral strain = Poisson's ratio x Longitudinal strain
=0.25 x 2.5465 x 107* = 6.36625 x 107>
Change in diameter, 0d = Lateral strain x Diameter
=6.36625x 107°x 25= |1.5916 x 1073 mm

.
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Volumetric strain = e [1 - _]
m

=2.5465 x 10741 - 2 x 0.25] = 1.27325 x 10~*
Change in volume, 0V = Volumetric strain x Volume

= 1.27325 x 107* x 490874 =

Result : 1) Change in length, 61 =0.25465 mm
2) Change in diameter, 6d=1.5916 x 1073 mm
3) Change in volume, 6Y = 62. 5 mm3

|[Example : 4.15| (Apr.99, Apr.02)

A steel bar of 500mm length, 60mm width and 20mm thickness
is subjected to an axial compression of 168KN. Calculate the final
dimension and final volume of the bar. The modulus of elasticity of steel
is 2.1 x 10°N/mm? and the Poisson’s ratio of steel is 0.3.

Given :  Length of the steel bar,]1 =500 mm
Width, b = 60 mm
Thickness, t = 20 mm
Axial compressive load, P = 168 KN = 168 x 103N
Young’s modulus, E = 2.1 x 10°N/mm?
Poisson’s ratio, 1/m = 0.3

To find :
1) Final length 2) Final width ~ 3) Final 4) Final
thickness volume

VUKt the bar, V=b x t x 1= 60 x 20 x 500 = 600000 mm?3
Area of the bar along the longitudinal direction,
A=bxt=60x20=1200 mm?

3
Longitudinal strain, e =P _168x107 6.667 x 4

10
Change in length, ol =‘tgngitud1ﬁﬂ(st<r2im x LoAgth
=6.667 x 1074 x 500 = 0.3333 mm
Final length = Original length - Change in length (~- Compression)

=500 - 0.3333 = |499.6667 m

Lateral strain

Poisson's ratio =
Longitudinal strain
Lateral strain = Poisson's ratio x Longitudinal
strain

=0.3%x6.667 x 10" +=2x107*
FORIE =71 P4{TT |




Change in width, ob = Lateral strain x Width
=2x107*x 60 =0.012 mm
Final width = Original width + Change in width (* Width increases)

=60+ 0.012 = [60.012 mm|

Change in thickness, 8t = Lateral strain x Thickness
=2x107*x 20 =0.004 mm
Final thickness = Original thickness
+ Change in thickness (= Thickness increases)

=20+ 0.004 = [20.004 mm

2
Volumetric strain = e [1 - _]
m

=6.667 x 1074[1-2x0.3] = 2.667 x 1074
Change in volume, 8V = Volumetric strain x Volume
= 6.667 x 1074 x 600000 = 160 mm?
Final volume = Original volume

- Change in volume (- Volume decreases)
= 600000 - 160 = |599840 mm?
Result : 1) Final length =499.6667 mm 2) Final width = 60.012 mm
3) Final thickness = 20.004 mm 4) Final volume = 599840 mm?

[Example : 4.16| (Oct.01)

A spherical ball of diameter 200mm when subjected to a
hydrostatic pressure of 10 N/mm? is found to shrink to a ball of
199.7mm. If the Poisson’s ratio of the ball is 0.3, find the Young’s
modulus of the material of the ball.

Given : Diameter of the =200 mm
Epherdcal béllhd ball after shrinking, =199.7 mm
d =0.3
Poisson’s ratio, 1/m =10 N/mm?

Hydrostatic pressure
To find : 1) Young’s modulus, E

SolutionStress , f = Hydrostatic pressure = 10 N/mm?

Change in diameter , 6d = d - dg =200 -199.7=0.3 mm
Lateral strain = Change in diameter _ 0.3 _ 0.0015

Original diameter 200
Lateral strain

Poisson's ratio =
Longitudinal strain

N
iUnIt— I EP4E12 |




Lateral strain _ 0.0015 _ o5
Poisson's ratloO 3

Longitudinal strain =

' Stress
uilg s modulus, E = = |2000 N/mmzl
Lonaitudinal ctrain
|Result: 1) Young's modulus E =200 |
N/mm*
|[Example : 4.17| (Oct.92, Oct. 16, Apr.17)

A circular bar of length 150 mm and diameter of 50mm is
subjected to an axial pull of 400KN. The extension in length and
contration in diameter were found to be 0.25mm and 0.02mm
respectively after loading. Calculate (i) Poisson’s ratio (ii) Young’s
modulus

‘mé Modulus of rigidity and (iv) Bulk modulus.
Lengun o1 the bar, 1 = 1oU min

Diameter of the bar, d = 50 mm
Load,P = 400 KN =400 x 103 N
Change in length, 61 = 0.25 mm
Change in diameter, dd = 0.02 mm

To find : 1) Poisson’s ratio, 1/m 2) Young’s modulus, E
3) Modulus or rigidity, 4) Bulk modulus, K
C
SolutionArea of the steel rod, A =2 x d2=2 x 502 = 1963.495 mm?
4 4
Pl
Ch length , 0l =
ange in leng AE
= L 400x  H5503%105
A0f x 150 vi
N/mm
Lateral strain = od _ J@ﬁ% 0004
495 0.25 50
Longitudinal stralln e= ol _0.25_ 11560667 x 1073
; ' . 1 __ Lateral strain
Poisson's ratioy,
9,0004 Izongitudinal stram

-3
We know that, E = 2C [1 11'?};167 x 10

1.2223 x 105 = 2C[1 + 0.24]

_1.2223x 105

= [4.9286 x 10*
2% 1.24

N/mm?

.
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E=3K[1—m] 3K[1—2Xm]
1.2223 x 105 = 3K[1 - 2 x 0.24]
5
k= 12224107 775353 104
3 x0.52 NV

Result : 1) Poisson’s ratio, 1/m =0.24
2) Young’s modulus, E=1. 2223 x 105 N/mm?
3) Rigidity modulus, C = 4. 9286 x 10*
N/mm?

4) Bulk modulus, K =7.8353 x 10* N/mm?*
|[Example :a.18 (Apr-01)

A steel bar of 30mm diameter is subjected to a tensile load of
70KN. Length of the bar is 400mm. Calculate (i)Extension of the bar
under the load 70KN (ii)The change in diameter (iii)Bulk modulus if
Young’s modulus of the material is 200KN /mm? and 1/m = 0.22.

Given : Diameter of the bar, d = 30 mm
Length of the bar,1 =400 mm
Tensile load,P = 70KN =70 x 103 N
Poisson’s ratio, 1/m = 0.22
Young’s modulus, E = 200 x 103N/mm?

To find : 1) Change in 2) Change in diameter,
length, 0l od
3) Bulk modulus, K
Aestagéihe steel bar, A =2 x d2=2 x 302 = 706.858 mm?
4 4

P 70 x 103
Longitudinal strain, e =AE =
10° 706.858 x 200 x
Change in length , 81 = Longitudinal strain x

Length =4.951 x 107% x 400 =

=4951x107*

Poisson's ratio, 1/m =—La.tera.l strain )
Longitudinal strain

Lateral strain = Poisson's ration x Longitudinal
strain

=0.22x 4,951 x 107* = 1.0892 x 10~*
Change in diameter, 6d==1l(axerzakslmﬂb<>gbiam|33erz676 x 1073mm

2 1
We know that, E =3K[1— _]=3K[1—2xm]
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200 x 103 = 3K[1 - 2 x 0.22]

3
- 200x107_ 1779048 x 10° |
3x0.56 N2
Result : 1) Change in length, 61 = 0.198 mm

2) Change in diameter, 6d = 3. 2676 x 10~3mm
3) Bulk modulus, K =1.19048 x 10°> N/mm?

[Example : 4.19| (Apr.94, Apr.03)

For a given material, the Young’s modulus is 1 x 10°
N/mm? and modulus of rigidity is 0. 4 x 10° N/mm?. Find the bulk
modulus and lateral contraction of a round bar of 50mm diameter and
2.5m long when stretched by 2.5mm.

Given : Young’s modulus, E = 1 x 10> N/mm?
Rigidity modulus, C = 0.4 x 10° N/mm?
Diameter of the bar, d = 50 mm
Length of the bar,1=2.5m = 2500 mm
Change in length, 01 = 2.5 mm

To find : 1) Bulk modulus, K 2) Change in diameter,
od

Solution,; 1
o ’onWe know that, E = 2C [1 + T
1x10° :2><0.4><105[1+1m~I
1 1x10°
[1+ m}: 5 x04x105 = 1.25
4=125-1=0.25
m
Also, E =3K[1—Z]=3K[1—2xl]
m m
1x 10° = 3K[1 - 2 x 0.25]
5
K= ;"éosz [0.667 x 105 |
X U. 7
m
Longitudinal strain, e :N(i =% =0.001

1 2500

Poisson's ratio, 1/m = —Latera] strain

Longitudinal strain
[
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Lateral strain = Poisson's ratio x Longitudinal
strain

=0.25%0.001=0.25x 1073

Change in diameter, dd==0l28erdltains0Riarh@ten 25 mm|

Result : 1) Bulk modulus, K =0.667 x 10°
N/mm?

2) Change in diameter, 6d = 0.0125 mm
|[Example : 4.20| (Apr.90, Oct.91, Apr.04)

In a tensile test on a hollow tube of external diameter 18mm
and internal diameter 12mm, an axial load of 1700N produced an
elongation of 0.0045mm in length of 75mm while diameter suffered a
compression of 0.00032mm. Calculate the Poisson’s ratio, Young’s
modulus and bulk modulus.

Given : External diameter of the tube, d; = 18
mm Internal diameter of the tube, d, =
12 mm

Axial load,P=1700 N
Change in length, 681 = 0.0045 mm
Length,1 =75 mm

To find : 1) Poisson’ s?gﬁgg?}ﬂldlam%?lﬁ'g&g% B0 dgl?h]ilgn%
3) Bulk modulus, K

Solution :
Area of tube, A = i (dlz ) =4ﬂ 2 ¥ 18-12 2
Lateral strain =24 = @08032 _ ; 77, 125 = 1A
dy - qg(
Longitudinal strain, e = ol _0.0045_ =6x107°
Poisson ratio, 1/m pomaterals! ?i?zf%g o5 - (02963
= . _5
Stress, f = Load _ 1700 _ 1?.(3‘2]50N/mm2
Area
141
Fn— [2. 0042 x 10°
N/mm?

We know that, E = %KE[}O 5n] -%K 1 2 x m]
Young' s modulus,
2.0042 x 10 -3K[1 2x02963]

K= w_ [1.6398 x 105

i’[[mf(ﬁ" '"Jﬂ' | PAl .I(l)}l./mm




Result : 1) Poisson’s ratio, 1/m = 0.2963
2) Young’s modulus, E = 2. 0042 x 10° N/mm?
3) Bulk modulus, K =1.6398 x 10> N/mm?

|[Example : 4.21] (Oct.94, Oct.17)

A bar of steel 28mm diameter and 250mm long is subjected to
an axial load of 80KN. It is found that the diameter has contracted by
1/240mm. If the modulus of rigidity is 0. 8 x 10°N/mm?, calculate
(1) Poisson’s ratio (2) Young’s modulus and (3) Bulk modulus.

Given : Diameter, d = 28 mm
Length ,1 =250 mm
Axial load,P =80 KN =80 x 103N

Change in diameter, 6d = 1/240 = 4.1667 x 103 mm

Modulus of rigidity, C = 0.8 x 10> N/mm?
To find : : 1) Poisson’s ratio, 1/m 2) Young’s modulus, E

3) Bulk modulus, K

Solution :

Area, A= ﬂ4x d?2=2x 282=615.752 mm?

X
4
Lateral strain =Qd4 4.1 ZSX 1073~ 14881 x 10~

P 80 x 103
Longitudinal strain, e =— - -
Attt AN %92

. ' . - E [E
Poisson's ratio, 1/m = Lateral strai

_ hopgdipgle

=1.14538 x 10 °E
129.922/E

) 1
We know that, E = 2C [1 + l;

E =2x0.8x105(1 +1.14538 x 107°E)
E=1.6x10°+ 0.18326E
(1- 0.18326)E=1.6 x 10°

5
g- L6x10%_ 17959« 10° |
0.8167 7
Poisson ratio, 1 = 1414538 x 10-'34"11%59 x 10° = 0. 224
. .

.
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AlSO, E=3K [1 - ]
m
1.959 x 10° = 3K[1 - 2 x 0.2244]

5
K= 1959x10°_ [1.1847 x 10°

3x0. N/mmz
Result : 1) Poissbir¢ratio, 1/m =0.2244
2) Young’s modulus, E = 1. 959 x 10> N/mm?
3) Bulk modulus, K =1.1847 x 105 N/mm?

COMPOSITE BARS
[Example : 4.22] (Oct.92, Oct.15, Apr.17)

Two vertical wires each 2.5mm diameter and 5m long jointly
support a weight of 2.5KN. One wire is steel and the other is of different
material. If the wires stretch elastically 6mm, find the load taken by
each and the value of Young’s modulus for the second wire if that of
steel'is 0. Z x 10” N/mm?.

Given : Diameter of the wire, d = 2.5 mm
Length of each wire,1 =5 m = 5000 mm
Elongation of each wire, 81 = 6 mm
Total load, P= 2.5 KN = 2500 N
Young’'s modulus of steel, E; = 0.2 x 106 N/mm2

To find : 1) Load taken by each wire P; & P,
2) Young’s modulus of the second wire, E,
Aedytignach wire, A;= A, =2 ZdZ =4 x 2.52= 4,909 mm?
Pl
A1Eq

A E 0l 6
P, = 111 4.909x0.2x10"x6 _ 1178. 16N

Totalload =P;+P, 500
2500=1178.16 + P,

P, =2500-1178.16 = [1321.84N

We know that, elongation, 0l

. P,1
Also elongation, 0l =
2E;
¢ = 1321.84 x 5000
4909 xE,
P,1 1321.84 x
BQeo—— = 2,244 x10°

&, ol

N/mm?*
9xg [URT=T1PATE™™ ]




Result : 1) Load taken by first wire, P; = 1178.16 N
2) Load taken by second wire, P, =1321.84 N
3) Young’s modulus of second wire, E, = 2. 244 x 105 N/mm?

|[Example : 4.23] (0ct.93, Oct.02)

A solid copper rod 36mm diameter is rigidly fixed at both ends
inside a tube of 45mm inside diameter and 50mm outside diameter. The
composite section is then subjected to an axial pull of 98KN. Determine
the stresses induced in the rod and tube and total elongation of the
composite section in length of 1m. E for copperis 1. 1 x 10°N /mm2 and
E for steel is 2 x 10°N/mm?.

? 98 KN

N\

—Copper rod

Steel tuhe—\

-

AREEEEER G-

7

AU

Fos kex
Fig.P4.2 Composite bar [Exapmle 4.23]

Given : Diameter of solid copper rod, d. = 36 mm
External diameter of steel tube, d; = 50
mm Internal diameter of steel tube, d, =
45 mm
Axial pul,P = 98 KN =98 x 103 N
Length of composite section,] =1 m = 1000 mm
Young’s modulus of copper, E. = 1.1 x 10° N/mm?

Tofind: 1) YR¥OEEBAME L5 e Bppd 107 N/mm?
f.

2) The stress induced in the steel], f
3) Total elongation, 61

.
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Solution :
Area of copper rod, A,=% x d_2=% x 362=1017.876 mm?

Area of steel tube, A; i G 2- 4 2) ta, (502 452) =064 mm?
- 3

3.

4 oL 4
Ina compogltejbar the per t th be  forbothe

strain ¢ & un leng i same th materials.

S

E, xf 2 x

fo= Tog=h gf: . 8. - (1)

Total load =P BOP, = f A+ f. A,
98000 = 373.064 f, + 1017876 = - ———- (2)
fe
Substitute the value of fin (2), we get
98000 = (373.064 x 1.818f.) + 1017.876

Jo §=-28000 _ 57.779
98000 =116 SeNTmm
Substitute the vague of f.in (1 j\%ve

get fs =1.818 x 57.779 = | 105. 042

fsl N/mm

Total elon_r‘_xc')‘fl_sgézgg OGEI) (or) 105.042 x 1000

= 166 2 x 105

= 0.52 3mm

Result : 1) The stress induced in the copper, f. = 57.779 N/mm?
2) The stress induced in the steel, f, = 105.042 N/mm?
3) Total elongation, 61 = 0.5253 mm

[Example : 4.24 (Oct.13, Apr.15)

A copper rod of 30mm diameter is surrounded tightly by a cast
iron tube 60mm external diameter, their ends being firmly fastened
together. When they are subjected to a compressive load of 12KN
axially, what load is taken by each member? Also determine the
contraction of the bar if their length is 100mm originally. The Young’s
modulus of copper is 0.1 x 106 N/mm? and that of C.Iis 0. 12 x 10°
N/mm=*.

Given : Diameter of the copper rod, d. = 30 mm
External diameter of C.I tube, d; = 60 mm
Internal diameter of C.I tube, d, = 30 mm

rUREeH ad B2 KN =12 x 103N




Young’s modulus of copper, E.= 0.1 x 10°N/mm?
Young’s modulus of C.I, E;; = 0.12 x 106

2
To find : 1) Load taken by the copper rod, P, N/mm

2) Load taken by the C.I tube, P,
3) Contraction of the bar, ol
‘P

YV

%
P\

te

Fig.P4.3 Composite bar [Exapmle 4.24]

Solution :
Area of copper rod, A, = i x d.2 =2 x 302 = 706.858 mm?
Area of CI tube, Aa xi—i (. -¥ ﬁ 2 ZSSGEEE 2

I L)hz 20. 575 4 2 2

n this compogite )
DA% taken by th 4p oAl

oad taken by the copper ro ———T—
C A E Aana

~ 12 x 103 706.858 x 0.1 x 10°
(706858 x 0.1 x 10%) + (2120575 x 0.12 x 106
Totalload,P=P_+ P
12 x 103 = 2608.695 + P,
Load taken by the CI tube, P;= 12 x 103 - 2608.695 =

Pl 2608.695x100 —
Contraction of the bar, 01=A"E— 706.858 x 3.691x10° mm

c C

= 12608. 695

Result : 1) Load taken By the copper rod, P_ =
2608.695N
2) Load taken by the Cﬁ.l tube, P;=9391.305N
3) Contractiogaif thEbaip ph=137691410> mm




|[Example : 4.25| (Apr.92)

A tube of aluminium 40mm external diameter and 20mm
internal diameter is snugly fitted on to a steel rod of 20mm diameter.
The composite bar is loaded in compression by an axial load P. Find the
stress in aluminium when the load is such that the stress in steel rod is
70N/mm?. What is the value ofP if E for steel is 2 x 10°N/mmZ and E
for aluminium is 0.7 x 10° N/mm?.

Given : Diameter of the steel rod, d;= 20 mm
External diameter of aluminium tube, d; = 40
mm Internal diameter of aluminium tube, d, =
20 mm  Stress induced in steel rod, f, = 70 N/mm2
Young’s modulus of steel, E; = 2 x 10° N/mm?
Young’s modulus of aluminium, E, = 0.7 x 10> N/mm?

To find : 1) The stress induced in aluminium tube, f,
2) The total axial load, P
Solution :

Area of steel rod, A, = ﬁ x dg2 =% x 202 = 314.159 mm?
2

Area of aluminium tubg,Ai— L x(d -d )= x(40
r\n A Q40 4 II
In‘a cjompé)gﬁg bar the strain per unit lerigth will be same for both
the materialf, _ fa 4
1.e. E_

S

E, x 5
- ahfs 0.7x102x70: 225/
S

Total load, P = P, Ag+1P2A,
= (70 x 314.159) + (24.5 x 942.478) = | 45081. 841

Result : 1) The stress induced in aluminium tube, f, ='24.5
N/mm?

2) The total axial load, P = 45081.841N
|[Example : a.26 (0ct.95, Apr.14)

A steel tube 100mm internal diameter and 12.5mm thick is
surrounded by a brass tube of the same thickness in such a way that the
axes of the two tubes coincide. The compound tube is loaded by an axial
compressive load of 5KN. Determine the load carried by each tube, the
stresses and strain developed in each tube. Assume that there is no
buckling of the tubes. Take Young’s modulus for steel as 2 x 10°> N /mm?
and that for brass as 1 x 10° N/mm?Z. The tubes are of the same length.

TOAE=T ' Ii P42 |
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—Steel tube
Brass tu bc—-\
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..
A5 5495%,

* 5 KN
Fig.P4.4 Composite bar [Exapmle 4.26]

Given : Internal diameter of the steel tube, d, = 100 mm
Thickness, t = 12.5 mm
Load,P =5 KN =5000 N
Young'’s modulus of steel, E; = 2 x 10° N/mm2
Young’s modulus of brass, E;, =1 x 10° N/mm2

To find : 1) Load carried by the steel tube, P
2) Load carried by the brass tube, P,
3) Stress in steel tube, f
4) Stress in brass tube, f},
5) Strain developed in each tube, e or ey
Solution :
External diameter of steel tube, d; = d,+2t=100+(2x12.5)=125
mm
Internal diameter of brass tube, D, =d; =125 mm

External dlameter of bljass tupe Dlz) D_i£2 125 +92 4)

Axea of steel tube, A;= 65 mm?
4
Area of brass tube, A, & x(D122 DZZ) % x(1502 1252) 5399.612
= 2
In this composite mm
bar, P x E
Stress induced in steel rod, f = —————
Es As + Eb Ab

.
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5000 x 2 x 10°

= = [0.7024
(2 ¥ 105 4417.865) + (1 x 105 x 5399.612, —

N/mm
P x Eb

Es As + Eb Ab
5000 x 1 x 10°

= 0.3512
(2% 10° x 4417.865) + (1 x 10° x 5399.612y —

N/mm

Load carried by steel tube, P, = f,A;= 0.7024 x 4417.865 =| 3103. 108|
N

Load carried by brass tube, P, = P — P =f35000 -3103.108= 1896.892

N b %_ —f
S
Stress developed inpagh tubepeagio=

bl R DTPRETR)

Result : 1) Load carried by the steel tube, P = 3103.108 N
2) Load carried by the brass tube, P}, = 1896.892 N
3) Stress in steel tube, f = 0.7024 N/mm A
4) Stress in brass tube, f, = 0.3512 N/mm y
5) Strain developed in each tube, e = e, =3.512 x 10~°

Stress induced in brass tube, f =

|[Example : 4.27| (Oct.96)

A RCC column 300mm x 450mm has 4 number of 25mm steel
rods. Calculate the safe load for the column, if the allowable stress in
concrete is 5N /mm? and E for steel is 15 times of E of concrete.

Given : Size of the column = 300 mm x 450
mm Diameter of one steel rod, d, = 25 mm
Number of steel rods = 4
Stress in concrete, f. =5 N/mm2
Young’'s modulus of steel, E; = 15 E..

To find : 1) The safe load for the column, P
Solution :
Area of the column =300 x 450 = 135000 mm?
Area of one steel rod =f x dg2 =7 x 252 = 490.874 mm?
Area of one 4 steel rods = 4 x 490.874 = 1963.496 mm?

Area of concrete, A, = Atea of column - Area of steel rods

=135000 - 1963.496 = 133036.51
E_Uﬁ_lf: ! P4§'ZZF """"i




In a composite bar, the strain per unit length will be same for both

the materials. s Te Jc

E, fs E -

fs =15 x§, =$15 B 5 —E'75 N/mm?

Load taken by steel rods, P,=f A ;=75 x 1963.496 = 147262.20 N
Load taken by concrete, P.=f.A.=5 x 133036.51 = 665182.55 N

Total safe load for the column, P = P + P,

= 147262.20 + 665182.55 = 812444.75 N

ie.

|Result: 1) The safe load for the column, P = 812.445 KN |

|[Example : 4.28] (Apr.01)

A cast iron of 200mm external diameter and 150mm internal
diameter is filled with concrete. Determine the stress in cast iron and
concrete when an axial compressive load of 50KN is applied. Take E for
cast iron = 18 times of E for concrete.

Given : External diameter of C.I tube, d; = 200 mm
Internal diameter of C.I tube, d, =150 mm
Totalload,P = 50KN=50x 103N
Young’s modulus of C.I, E ;=18 E,

To find : 1) Stress in castiron tube, f 2) Stress in
concrete, f.

Solution :
Diameter of the concrete, d.= d; =150 mm

Area of concrete, A, = % x d % =% x 1502 = 17671.459 mm?
Area of Cl tube, A 5 4 12 4 (d

4
-d
) =ay (ZOQ%—1502) =13744.468 mm?2
4
In a compogite bar, the strain per unit length will be same for both
the materidls. fg fe=
ie. E. E;, = E,

C1

foi =18 x f. = 18E
Totalload,P =P + P

.
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P=fxA+fixAgy
50 x 103 = (f, x 17671.459) + (18 f, x 13744.468)
50 x 103 = 265071.883 .
50 x 103

fe= 265071883 = | 0.18863 |
' N/mm*
fq=18xf, =18x0.18863= [3.39534
AL
Result :1) The stress in castiron tube, f ;= 3. 39534

N/mm?
2) The stress in concrete, f. = 0. 18863 N/mm?*
TEMPERATURE STRESSES

[Example : 4.29 (Apr.92)

Two parallel walls 6 m apart are stayed together by a steel rod
20mm diameter passing through metal plates and nuts at each end. The
nuts are tightened when the rod is at a temperature 100°C. Determine
the stress in the rod when temperature falls down to 20°C, if (i) the
ends do not yield (ii) the ends yield by 1mm. Take E = 2 x 10°N/mm?
and a =12 x 1076/ °C. Find also the force exerted in both casees.

Given : Length of the steel rod, ] = 6m = 6000
mm Diameter of the steel rod, d = 20 mm
Initial temperature, T; = 100°C
Final temperature, T, = 20°C
Amount of yield, 3 = 1 mm
Young’s modulus, E = 2 x 105 N/mm2
Co-efficient of linear expansion, a =12 x 1076/ °C

To find : 1) The stress when the ends do not yield
2) The force exerted when the ends do not yield
3) The stress when the ends yield by 1 mm
4) The force exerted when the ends yield by 1 mm

Solution :
Area of the rod, A = ﬂ4< d?2=2x202=314.159 mm?
Fall in temperature, T =T, - T, =100 - 20 =80°C

The free expansion is preve‘hted when the supports do not yield. |

So, temperature stress, f=a TE

=12x10°x80%x2x10% = |192 N/mm?

.
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Force exerted, P =f x A=192 x 314.159= |60318.528

When the supports yield by 1 mm, N

i
Temperature stress, f = [aT _l_] E

1
= 12x106x80- — 2 [158. 667
e L0 6000 12 | - |

Force exerted, F =f x A =158.667 x 314.159 = |49846. 666

Result :1) The stress when the ends do not yield = 192\'N/mm2

2) The force exerted when the ends do not yield = 60318. 528

N

3) The stress when the ends yield by 1mm = 158. 667 N/mm?

4) The force exerted when the ends yield by 1mm = 49846.
|Examplegas| (Apr.93)

A railway is laid so that there is no stress in the rail at 50°C.

Calculate (i) the expansion allowance for no stress in the rail when the
temperature is 150°C (ii) the maximum temperature to have no stress in
the rail if the expansion allowance is 26mm per rail. Take a =12 x 10°%/
°C and E = 2 x 10°N/mm?. The length of the rails is 30m.

Given : Initial temperature, T; = 50°
C

Yomalg'smpetatuseEE, 21 30°0/mm
Co-efficient of linear expansion,« = 12 x 107%/
°C Length of the rails,] = 30 m =30 x 103mm

Solution :

Rise in temperature, T =T, - T; =150 - 50 = 100°C
(i) To find the expansion allowance for no stress in the rail
Let 13 be the expansion allowance

When there is no stress in the rails, temperature stress

P R
[ 718 =

ﬁlo%xz%O‘“wa— ]xzx

30 x 103
36-8=0

5= 36 mml

(ii) To find the maximum temperature to have no stress in the rails,
if S=26mm
When there is no stress in the rails, temperature stress = 0

.
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T2 E o0
[ 718 =

12 % 10-6x T 22— 2
X X - X X
T 30 x 103 ]
036T-26=0
T =26 _72222°C
36

Maximum temperature = Rise in te Initial
7t%:mpera 19re 122.222°C

Result : 1) The expansion allowance required for no stress in the
rails when the temperature is 150°C =36 mm

2) The maximum temperature to have no stress in the
rails, if 3 is 26mm = 122.222°C

STRAIN ENERGY, RESILIENCE & TYPES OF LOADING

| Example : 4.31| (Apr.88, Apr.97, Apr.04, Apr.15, Apr.17)

Calculate the strain energy that can be stored in a steel bar
70mm in diameter and 6m long, subjected to a pull of 200KN. Assume
E=200 KN/mm?.

Given : Diameter of the steel bar, d = 70 mm
Length of the steel bar,] =6 m = 6000 mm
Load,P =200 KN =200 x 103N
Young’s modulus, E = 200 KN/mm? = 2 x 10°> N/mm?
To find : 1) The strain energy, U

Solution :
Area ofrod, A = ﬂff d?2=2 x 702 = 3848.45 mm?

Volume of rod, V= A x 1 = 3848.45 x 6000 = 2.30907 x 107 mm?3

4
Instantaneous stress, f =§ — =51.969 E

= phox103 NV/mm

« SIS

M 230907 x /

5
2x2x10 10

= [155907 N-mm

Result : 1) The strain energy, U = 155907 N-mm |

Strain energy, U

.
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[Example : 4.32]

Calculate the modulus of resilience at a point in a material
subjected to a stress of 200 N/mm?2. Take E = 0.1 x 106 N/mm?.

Given : Maximum stress, f,., =200 N/mm?
Young’s modulus, E = 0.1 x 10°N/mm?
To find : 1) Modulus of resilience
Solution :
2
Modulus of resilience =fa= = XZOOZX ¢ [0.2 N/mm?

|Result: 1) Modulus of resilience = 0.2 |

N,/mmz
| Example : 4_33| (Oct.89, Apr.94, Oct.97, Oct.02,0ct.03)

A steel specimen 150mm? cross section stretches by 0.05mm
over a 50mm gauge length under an axial load of 30KN. Calculate the
strain energy stored in the specimen at this stage, if the load at the

elastic limit for the specimen is 50KN. Calculate the elongation at elastic
limit and the proof resilience.

Given : Area of cross section, A = 150 mm?
Change in length, 61 = 0.05 mm
Gauge length, 1 = 50 mm
Axial load,P = 30KN=30x 103N
Load at elastic limit, P, = 50 KN = 50 x 103
N

To find : 1) Strain energy, U 2) Elongation, 0l 3) Proof resilience
Solution :

Volume, V =A x1=150 x 50 = 7500 mm?3

Assume the rod is subjecsegi 59 gradually applied load.
Instantaneous stress,§ ~ . = = ——— =20

N 10Area &
- Change in leggih /mm
Longitudinal strain, e = == =

= 1x10-3
Original lg;@h 0 50

02

' - Stress __ 200 _
Young's modulus, E §gngitudinal strain - X
x 10> N/mm? 3

: 1x 10002

Strain energy stored, U =——
xVolume = 2x2x10°

2E M
funit— "1 PA{29 '

x7500 =




Maximum instantaneous

stress, Load at elastic limit
foa™ = =333.333 2
2 Area  50x 10350 N/mm
2

Proof resilience =J@ x Volume = @ x7500 = | 2083.329 N-mm|

2xE 2x2x10°

Elongation, dl = J@EM = 5 0.0833 mm

Result : 1) Stf‘(a}r(ljdenergy stored, U = 750 N—-mm

2) Elongation at elastic limit, 61 = 0.0833 mm
3) Proofresilience = 2083.329 N-mm

|[Example : 4.34] (0ct.04)

A mild steel bar of 10mm diameter and 2m long is subjected to
an axial tensile load of 25KN applied suddenly. Find the stress induced
and the strain energy stored in the bar. Take E = 2 x 10°N/mm?,

Given : Diameter of the bar, d = 10 mm
Length of the bar,1= 2 m = 2000 mm
Load,P = 25KN=25x103N
Young’s modulus, E = 2 x 10° N/mm?

To find : 1) Stress induced, f 2) Strain
energy stored, U

Solution :Area of the rod, A = ﬂﬁf d?2=2x 102=78.540 mm?

Volume, V=A Z 1=78.540 x 2000 = 157080 mm?3
For suddenly applied load,

Instantaneous stress, f = 2 S DA |636. 618

= N/mm?
235 % W40
Strain energy stored, U = f x
2xE
Volume
636.6182

x 157080 = [159154.429 N-mm|

T 2x2x10°

Result : 1) Stress induced in the rod, f = 636.618 N/mm?
2) Strain energy stored, U = 159154.429 N—-mm

.
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| Examp[e . 4_35| (Oct.04 Apr.91, Oct.95, Oct.04, Apr.05)

Determine the greatest weight that can be dropped from a
height of 200mm on to a collar at the lower end of a vertical bar 20mm
diameter and 2.5m long without exceeding the elastic limit stress 300
N/mm?. Calculate also the instantaneous elongation. Take E = 2 x
105N /mm?.

“GIVen:

HeTgiT, 77 = 200 T
Diameter of the bar, d = 20 mm
Length of the bar,1=2.5m = 2500 mm
Instantaneous stress, f = 300 N/mm2
Young’s modulus, E = 2 x 10° N/mm?

To find : 1) The greatest weight that can be dropped,

p
2) Elongation, ol
Solution :
Area of the bar, A = ﬂ4)_< d?2=2x202=314.159 mm?
Volume, V = A x1=314.159 x 2500 = 785397.5 mm?
300 x 2500
Instantaneous elongation, 8] =p— =———
Work done by_the load, W=P (2 +01) =P (200 + 3.75) = 203.75 P
. . 2 % 102
Strain energy stored in the bar, U =
Vol 2xE
300% Volume
= —————=x785397.5=176714.438 N-
2x2x10 0
Work done = Strain energy
stored
203.75 P = {76714 A38
-1 : -
P 0375 LB6Z.31N

Result : 1) The greatest weight that can be dropped, P = 867.31 N
2) Elongation, 61 =3.75 mm

|[Example : 4.36| (Oct.91)

A load of 100N falls by gravity through a vertical distance of
3m, when it is suddenly stopped by a collar at the end of a vertical rod
of length 6m and diameter 20mm. The top of the bar is rigidly fixed to a
ceiling. Calculate the maximum stress and strain induced in the bar.
Take E =1.96 x 10°N/mm?.

.
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Given : Falling weight, P=100 N
Height of fall, # =3 m = 3000 mm
Length of the rod, I = 6m = 6000 mm
Diameter of the rod, d = 20 mm
Young’s modulus, E = 1.96 x 10°N/mm?

To find : 1) The maximum stress, f 2)

Strain, e
Solution :
Area of the rod, A = ﬂ;f daz=2 ><4202 =314.159 mm?

Instantaneous stress, p = P * P_Z +2EP K
A A? Al

-_100 , 1002 . 2x1.96x10%x 100
x 3000

314.159 2
=0.318+ 249.7{%814#%0. 096

oo Moom?
Instantaneous stl;ain, e= m = [1.276 x 1073

Result : 1) The instantarfeous stress, f=250.096 N/mm?
2) The Instantaneous strain, e = 1. 276 x 1073

314159 x 6000

|[Example : 4.37| (Apr.93, Apr.13, Oct.16)

A weight of 1400N is dropped on to a collar at the lower end of
a vertical bar 3m long and 25mm in diameter. Calculate the height of
drop, if the maximum instantaneous stress is not to exceed 120N /mm?.

What is the corresponding instantaneous elongation. TakeE = 2 x
10°N/mm?.

QIverr . rdiing welgnt, r = 14UU N
Length of the bar,1 =3 m = 3000 mm
Diameter of the bar, d = 25 mm
Instantaneous stress, f = 120 N/mm2
Young’s modulus, E = 2 x 10° N/mm?

To find : 1) The height of drop, # 2) Eelongation, 6l

Solution :
Area of the bar, A = ﬂéf d?2=2 x 252=490.874 mm?

Volume, V =1}>i 1=490.874 x 3000 = 1472622 mm?3
4

o so—— "2
Elongation, 0l = %

O 2
YRR I PARZ :




2

Strain energy stored in the bar, U x

= *E Volume

1202
= = 1472622 =53014.392 N-
2x2x10 mm

Work done by the falling weight = P (4 + 61) = 1400(4 + 1.8)

Work done = Strain energy stored
1400(4 + 1.8) =53014.392

h+18=23014392 3,507,
1400

h=37.8674-18= |36.0674 mm

Result : 1) The height of drop, h =36.0674 mm
2) The instantaneous elongation, 61 = 1.8 mm

|[Example : 4.38] (0ct.92, Apr.01)

It is found that a bar of 36mm in diameter stretches 2mm under
a gradually applied load of 150KN. If a weight of 15KN is dropped on to
a collar at the lower end of this bar through a height of 60mm. Calculate
the maximum instantaneous stress and elongation produced. Assume E
=215 KN/mm?,

Given : Diameter of the bar, d = 36 mm
Gradually applied load, P; = 150 KN =150 x 103
HYongation under
gradually applied load = 2 mm
Falling weight, P = 15 KN = 150000 N
Height of fall of weight, # = 60 mm
Young’s modulus, E = 215KN/mm?2 = 2.15 x 10°> N/mm?

To find : 1) The maximum instantaneous stress, f
2) The maximum elongation, 01

Solution :
Area of the bar, A = ﬁx d?2=2x36=1017.876 mm?
Elongation under graqlually applied load 3¢~
_ 150 x 103 x 1
1017.876 x 2.15 x
QS
1= f051017-876 x 2-315 X -2917.911
150 x 10 —

.
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Maximum instantaneous stress due to falling
: ——
weight, P’ 2EPh

f= A2 Al
__15000 150002 , 2 x 2.15 x 10° x 15000 x
1017.876 80017.8762 1017876 %
2917.911 '
=14.7366 + 36]}..%714 =1376.008
Maxi longation, 3l 27 :
aximum elongation, 0l = ¢ S TE 100 = 5.103 mm

Result : 1) The maximum instantaneous stress, f = 376. 008 N/mm?
2) The maximum elongation, 61 = 5.103 mm

[Example : 4.39 (Apr.01)

A coach weighing 20KN (is attached to a rope) is traveling
down a slope at a speed of 2m/s. It is stopped suddenly by pulling the
rope. What is the instantaneous stress and the maximum tension
induced in the rope due to sudden stoppage. Assume the length and
cross sectional area of the rope to be 100m and 1000 mm? respectively.
Take £ =2 x 10°N/mm*.

Given: Weight of the coach, W = 20KN=20x103 N
Speed of the coach,u = 2m/s=2000 mm/s
Length of the rope,1 = 100 m =100 x 103
mm

Area of the rope, A = 1000 mm?
Young’s modulus, E = 2 x 10° N/mm?

To find : 1) The maximum instantaneous stress in the rope, f
2) The maximum tension induced in the rope, T
Solution :

When the coach is suddenly stopped, the kinetic energy of the coach

is converted intg Qﬁaln_f@nergy of the rope.
ie. —=
2

Wuzi\lfo%ume cAx1 W
- T

20 x 103 x 2 x 1000 1@0 103

3 g e = - S ><—081><1Omm/s)3

28002-81 x 10 2x2x10 .
£2 2 x2x10%x 20 x 103 x 20002

2x9.81x103x 1000 x 100 x 103

f= o
N/mm? JORT =] PARE™"]

/mm

=16309.89




Maximum tension, T = Maximum stress x Area

=127.71x1000=127710N = |127.71 KN

Result : 1) The maximum instantaneous stress, f =127.71 N/mm?
2) The maximum tension induced in the rope, T =127.71 KN

.
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Unit - 111

Chapter 5. GEOMETRICAL PROPERTIES
OF SECTIONS

1. Centre of gravity

The centre of gravity of a body may be defined as a point
through  which the entire weight of the body is assumed to be
concentrated. It may be noted that every body has only one centre of

gravity. It is a term related with
a body having volume and mass i.e. solids.

1. Centroid

The centroid of a section may be defined as a point through
which the entire area of the section is assumed to be concentrated. It is the
term
related with plane figures like rectangle, circle, triangle, etc. having only
area bul Y f a plane

I\ a an @
figure is

1. Cent

NN

X —=K

Fig. 5.1 Centroid of a plane figure
Consider a plane figure of area A whose centroid is required to
be found out. Divide the plane area into number of small vertical strips
as shown in fig.5.1.

Let aj, ay, a3, etc. be the area of the strips and (x4, y¢), (%
y2), (X3, y3), etc. be their co-ordinates of their centroids from a
fixed point O. Let, X and Y be the co-ordinates of the centroid of the
plane figure.
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Taking moment about Y-Y axis,
The moment of area of first strip =a;x;

Sum of the moment of areas of all such strips about Y-Y
axis.
Zax = a X+ aX, +

The moment of area of the whole plane figure about Y-Y axis =
AX

By the principle pf TITOTIETTL, nA =2
al 1 32Z2 + 3323

)5(== Yax

A Ataytagt

y=a1yptazy, tagyz+

Similarly, a Ta,ta;+
Centroidal axis
A line passing through the centroid of the plane figure is known
as

centroidal axis.

Axis of reference
A line about which the co-ordinates of centroid are calculated
is known as axis of reference or reference axis.

For plane figures, the axis of reference is taken as lowermost or
uppermost line of the figure for calculating Y and left extreme line or
right extreme line of the figure for calculating X.

Axis of symmetry

The axis which divides a section into two equal halves
horizontally
or vertically is known as axis of symmetry. The centroid of the section
will lie on this axis of symmetry.

5.4 Moment of inertia
The moment of inertia of a body about an axis is defined as the
internal resistance offered by the body against the rotation about that

axis.

The moment of inertia of a plane figure or lamina about an axis
is the product of its area_andsqua.r.e of its distance form that axis.

Mathematlcally,gﬂgmel-l!llt 94* 1ne*‘-t—1§-¥ =Zh. r2




5.5 Moment of inertia a plane figure
A

a @ as

N

Vo
NN
NN

e J* | ——

I

B
Fig.5.2 Moment of inertia of a plane figure
Consider a plane figure of area A whose moment of inertia is
required to be found out. Divide the plane area into number of small
elemental strips as shown in fig.5.2.
Let aj, a,, a3, etc. be the areas of the elemental strips and ry, ry,
r3, etc. be the distance of their centroids from a fixed line AB.

First moment of area of the first strip about AB = a;r;
The second moment of area of the first strip about AB
=apr.r;=a.ri
-~ The second moment of area of the plane figure about
AB =a;rf+ayr?+..=3a.r?

This second moment of area is known as moment of inertia.
2

5.6 Parallel axis theorem
It states, if the moment of inertia of a plane area about an axis
passing through its centroid is denoted by I then the moment of inertia of
the area about any other axis AB which is parallel to the first and at a
distance h from
the centroidal is given by, | Iy = I + Ah? |
Where, I,z = Moment of inertia of the area about an axis
AB. I; = Moment of inertia of the area about its
centroid A = Area of the section

h = Distance between centroid of the section and axis
1
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Proof

A B
Fig.5.3 Parallel axis theorem
Consider an elemental strip in a plane whose moment of inertia is
required to be found out about an axis AB as shown in the fig.5.3
Let, 0a = Area of the strip
y = Distance of C.G of strip from C.G of the section
h = Distance of axis AB from the C.G of section.

We know that, the moment of inertia of the elemental strip
about an axis passing through the C.G of the section,
I =da.y?

Moment of inertia of the whole section about an axis passing
through the C.G of the section,

I = Xday?

The moment of inertia of the section about the axis AB,

I,g=Z8a(h +y)?= Zéa(hz +y2+ Zhy)
= h?%da + y*Xda + 2hyrda

Yda.y = Ay = 0 (£ First moment of area about centroidal axis = 0)
| o IAB: IG+ Ahz
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5.7 Perpendicular axis theorem

It states, if I, and Loy be the moments of inertia of plane section
about two perpendicular axes meeting at O, the moment of inertia I, about
the axis Z-Z, perpendicular to the plane and passing through the

intersection of X=X and Y=Y axes is given by,

| I77 = IZZ + Iyy

Z

(8] X

Y
la

Y
Fig.5.4 Perpendicular axis theorem
Proof
Consider three mutually perpendicular axes OX, OY and OZ.
Consider
a small lamina of area da having co-ordinates as x and y along OX and
0Y. Let r be the distance of the lamina form Z-Z axis.

From the geometry of the figure, r? = x% + y?
The moment of inertia of the lamina about X-X axis is given by,
I, =da.y?
Similarly, I, =da. x?
I =da.r’=da (xz + yz)

2 _
w17 =T E T YT S boc* lyy
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5.8 Derivation of moment of inertia of some sections

1) Rectangular section

b
>
P } ‘
|
Lo [NSNNNRNNNNNY Ay
2 | !
% 3/ A
: |
4 |
|
= 1
)

Fig.5.5 M.I of rectangular section

Consider a rectangular section of width b and depth d as shown
in the fig.5.5. Now consider an elemental strip of thickness dy parallel
to X-X axis and at a distance y from X-X axis.

Area of the strip = b. dy

M I of the strip about X-X axis = Area x (Distance)?

=b. dy. y? = by?dy

M. I of the whole section about X-X axis,

"2 3+d Q3
8

Lo ] , 3b] :g&*

4 EY dy =

2

=b [zd_% 24] =b[ 2_]—

bd3| . db3

Ly=17— Lyy=12—

Similarly,
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2) Circular section

Fig.5.6 M.| of circular section

Consider a circle of radius r with centre O and X-X and Y-Y be the
two axes of reference passing through O.

Now consider an elementary ring of radius x and thickness dx.

~ The area of the ring, da = 2 n1x. dx

Moment of inertia of the ring about Z-Z axis

= Area x(Distance)?= 2 1 x. d x. x? = 2;1x3dx

The moment of inertia of whole section about Z-Z axis

r

2axt T 2ur?
IsszlzﬂXdX3—'[]: T —4=-JHT
0
0
d a(d/2)4

Substituting,,r= 2.
4 2
From the gFor_netry of th{z[Qection, | =
ss — XX

Iyy' According to perpendicularga%(is

theorem,

Ths = A3 2T or g1
La=lyy=p=" vat T
iUnit— & {0} 57 |
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3) Triangular section

| —f—v

OVf=—,

5 l
!

Fig.5.7 M.\ of triangular section
Consider a triangular section ABC of base b and height /.

Consider an elemental strip DE of thickness dy at a distance of y

from the vertex A as shown in the fig.5.7.

From the figure, the triangle ADE and ABC are

similar.
~DE_Y™
BC & y
DE =BC. n

Area of the strip, 4, _by dy
B h

Moment of inertia of the strip about the base
BC

2
= Areax (Distance)

By by
Momentof inertidyél th¥¥hole sedtiof Hisout the base

BC, h b
» Oy
B‘: ]h_ =
0 2 -
. y)¥-dy
Igc =3, ] y(h*+y?-2hy)dy
0
h
_b
lpc =) Oh*+y®-2hy?)dy
0
b y2h2 2hy3h
1R
y -4 0
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b At 2h*

4 3]

_ b 6/*+3n*-8n*
nl 12 ]
bt l_2
120

*Igc ::1££

The moment of inertia of a triangular section about the axis
passing through it centre of gravity.

In a triangular section, the distance of C.G from the base is given by,

)/

hi==
3

According to the parallel axis theorem,

lg=lgc-ah? 4

RYRE
o 12 :
I — 3=
bh3
. _ bh3 -
“1o= 3675 18
36

5.9 Polar moment of inerti¥
The moment of inertia of a plane area with respect to the
centroidal axis perpendicular to the plane area is called polar moment
of inertia.
rdflathematically, Ip olr__l ¥ 3&2;( + 1] v
section,
5.10 Radius of gyration

Radius of gyration may be defined as the distance at which the
whole area of the plane figure is assumed to be concentrated with respect

to a reference axis.
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Fig.5.8 Radius of gyration
Consider a plane figure of area A. Divide the whole area into
number of vertical strips as shown in the fig.5.8. Let a;, a,, a3, etc. be

the area of the strips and ry, ry, r3, .., etc. be the distance of these areas
from a given axis AB.

The moment of inertia of the area about the reference axis AB, I, = Zar?

Let us assume that the vertical strips be arranged at the same
distance K from the axis AB so that the moment of inertia about the
axis AB remains unchanged. Now the moment of inertia of the plane
figure about the axis AB, —

w1 ap Iap = a K% # hKi2 m?& -+ = K?Za = AK?
AKZ (or
Where, K'is radius of gyration of the plane figure about the axis AB.

5.11 Section modulus

The section modulus or modulus of section is the ratio between
the moment of inertia of the figure about its centroidal axis and the
distance of
extreme surface from the centroidal axis. It is usually denoted by Z.

7= Moment of inertia about
Section modulus %E@%ﬂ%is:mﬂanc@ extreme surface
7 from centroidal afi&2 ) " .
. . I “nd* -
Section modulus of circle, =58 A0 =
vA 2(72 2 4 ba
6
s - d
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(POINTS TO REMEMBER)

1) Position of centroid of plane geometrical figures

Area

Shape Figure X Y
b d
Rectangle 5 >
. d d
Circle 5 -
. b h
Triangle 3 3
. Intersectio h
Triangle —
n of 3
medians
- . (a%+b%+ab) | (2a+b)h
rapezium 3@+D) 3@+b)
T . b (2a +b)h
rapezium E W

{ Unit — 1lI




2) Moment of inertia of plane geometrical figures

M.1 about M.I about
Shape Figure centroidal axis base
(Ie) (Isc)
A , D
I
3
~4+-—-+-—-1 bd3 i bd
Rectangle | | G Ig=17— Igc= 3—
r
4 vd*
Circle o= 24 I
G~ 64
32
— A
; L bh3 bh3
Triangle | Ig=35— Igc= 17—
1
.o d4
Semi circle .
Iec=178
3) X =121 T apZp + azZz+ -~ (il
a1+az+a3+‘“ )
—a1yqt+agy,+agyzt
4) Y =a1y1t Ayt aszys (mm
al+a2+a3+"‘ )
5) Parallel axis theorem, I, = I; + ah? (mm*)
6) Perpendicular axis theorem, I;;=1,, + 1, (mm*)
7) Radius of gyration, K = I (mm
{a )
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(SOLVED PROBLEMS)

DETERMINATION OF CENTROID

Example :5.1

Determine the centroid of an angle section 100mm x 80mm x

20mm thick with its longer arm being placed vertical.

20 — \l‘_
l
- el
= @ i
X I X
)2 ‘ T
- )_ i Gy ‘
A L@
Bl__v__1Y C
80 ““‘\TJ ’
1
Fig.P5.1 Centroid of ‘L’ section [Example 5.1]
Solution :
Split the section into two rectangles as
shown. Let, AB and BC be the reference axes
Let X andY be the distance of C.G from AB and BC respectively.
a1=80x20=160pmm2;x=@540mm; %=m=10mm
az 20 x 80 = 160G mm?; x = 2—2= 10 mm; y =204 80 - 60 mm
x =11 "% - (1600 x 40) + (1600 x 10) _ o900 = 5=
a,+a, 1600+1600 3200 —
_ay, Tay, _ (1600 x 10) + (1600 x 60) _ _
y="1"1 272 )+ ( ) = 112000 = e

a;+a, 1600+1600 3200

Result : The coordinate of centroid from reference
axes

X =25 1 mand§=35mm
Example :5.2

Find the centroid of the section shown in the fig.P5.2
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ly
A
25
Fig.P5.2 Centroid of ‘L’ section [Example 5.2]
Solution :
a; =25 x 100 = 2500 mm?; a, = 100 x 25 = 2500 mm?
xl—ﬁ—125mm1 y —25+100 75 mm

X =m=50mm;2y=ﬁ=12.5mm
= 2 2

x= 4% A%, 2 (2500 x 12.5) + (2500 x 50) _ 156250 =

1
a az 2500 + 2500 5000 3125 |
Y (2500 x 75) + (2500 x 12.5)

= 2= ) = 218750 43 -

mm

|Result :3% ;%’21 2 Drgum+aﬁa\9} = 433.\}%Umm from reference |
axes

| Example: 5.3| (Apr.14)

Ilb-q

Find the centroid of a T-section with flange 100mm x 30mm
and web 120mm x 30mm.

Solution :

|This section is symmetrical about Y=Y axis. So the C.G will lie on this |

axis‘._ x =100 _ 50 mm
2

a; =100 x 30 = 3000 mm?; a, =30 x 120 = 3600 mm?
120

yi= 33 15mm;y-30+ =90 mm

+
:aly 5 y

Ilb-q

= (3000 x 15) + (3600 x 90) _ 359000 -
55.91

a;+a, 3000 i Sgﬁﬁ ————— 6689 oo mm




100

30

120

30

Fig.P5.3 Centroid of ‘T’ section [Example 5.3]

|Result :X =50 mmandY =55.91 mm from reference |
axes

Example:5.4 (Apr.04, Oct.12)

Find the centroid of an inverted T-section with flange
150mmx20mm and web 100mm x 25mm.

25 ’\‘
l
®i

= X | o] N

P e

o i

150 B| e g
e,

Fig.P5.4 Centroid of inverted ‘T’ section [Example 5.4]
Solution :

|This section is symmetrical about Y=Y axis. So the C.G will lie on this |
axis -
a; =25 x 100 = 2500 mm?; a, = 150 x 20 = 3000 mm?

Y1:20+1—%O=702mm;y &:10mm

2
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a +a
= lyl 2y2

I =<

— (2500 x 70) + (3000 x 10) =205000 37 273

e an e mm
dyg, T d, LIOUU T oUU VAV
|Result X275 ;im and =\é7. 2’7§ mm from reference |

axes
Example :5.5

A channel section of size 100mm x 50mm overall. The base as
well as the flanges of the channel are 15mm thick. Determine the
centroid for the section.

50 Y
. A *_'T_"
L ® |
-
|
= x{ | | .
-
=l .-
e @ ¥
15 B | ——

Fig.P5.5 Centroid of channel section [Example 5.5]
Solution :

|This section is symmetrical about X=X axis. So the C.G will lie on this |
axis . _100
~Y =——=|50
:
a;=50x15=750 mm?; a,=70x15=1050 mm?; a;=50x15=750 mm?

X =w=25mm;x =1—5=7.5mm;x =®=25mm
=2 27 2 Y

xo 4% TAX, T AX (750 x 25) + (1050 x 7.5) + (750 x 25)

a; +a, +ag 750 + 1050 + 750
- 45375 _
T o550 17.794 mm

|Result : X =17.794 mmand Y =50 mm from reference |
axes
| Example: 5.6| (Oct.14)

Find the centroid of an I-section having top flange 150mm x
25mm, web 160mm x 25mm and bottom flange 200mm x 25mm.
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Fig.P5.6 Centroid of ‘I’ section [Example 5.6]
Solution :

|This section is symmetrical about Y=Y axis. So the C.G will lie on this |
axis . x =200 =

a; =150 x 25=3750 mm?% y =25+160+ 25 197.5mm
2

a, = 25 x 160 = 4000 mm?; y, =25 + 189 = 105 mm
2

a3 =200 x 25 =5000 mm% y =22=12.5mm

2

a +a +a

YA A,
(3750x197.5)+(4000x105)+(5000x12.5) a, + a, + a;

3750+400828086 - 95 931 mm

12750

|Result :X =100 mmandY =95.931 mm from reference |
axes

DETERMINATION MOMENT OF INERTIA

| Example: 5.7| (Oct.01)

Determine the polar moment of inertia of rectangle 100mm

v

x150mm.
Solution :
Moment of inertia of rectangular section about X-X
axis, bd3
[y=17= ————=28125000 *
x~ 12 12 1 i
00 x 1503
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Fig.P5.7 M.I of rectangular section [Example 5.7]

Moment of inertia of rectangular section about Y-Y
axis, ~ db_3 - %
Ly=17= — i 12500000

Polar mom@nt tidertia,

Igs = I+ 1y, = 28125000 + 12500000 = [40625000

TTHIIT |

| Result : The polar moment of inertia, I, = 40625000
mm

(Apr.01)

Determine the polar moment of inertia of a circle of diameter

100mm.
%

0100

v
Fig.P5.8 M.I of circular section [Example 5.8]
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Solution :
Diameter of the circle,d = 100 mm
Moment of inerti4a of circular section about X-X or Y-Y

a>qixs){=1yy=64il=d_ ——=4908738521 *
mm

Polar momentlgf 100*
inertiay + 1, =4908738.521 + 4908738.521 = [9817477.042 |

T
|Result : The polar moment of inertia, I,; = 9817477. 042 |
mm"
| Example: 5.9| (Apr.03, Oct.16)
An angle section is of 100 mm wide and 120 mm deep overall.
Both the flanges of the angle are 10 mm thick. Determine the moment of
inertia about the centroidal axes X-X and Y-Y. Also find its radius of
gyration about its centroidal axes.

Solution :
10
A
@
Gz ’
S |
. o R I [ SO
| |
-Y7 ————— l ' Iy =T-) 1
st |y [
i 3 1 [ _._‘:1
100 B__T_.]\. ; C |
Fig.P5.9 M.l of ‘L’ section [Example 5.9]
Split the section into two rectangles as shown.
a,=100 x 10 = 1090 mm?; x =&g=50mm;y=11—2=5mm
_ _ 2., 10 _ R 110 _
32—10><110—11200mm,x—Z-Smm,y2—12()+ =65 mm

X = 1 T35, 2 (1000 x 50) + (1100 x 5) _ 55500 = 26,43 mm
a +a, 1000+1100 2100

y =117, (1000 x 5) + (1100 x 65) _ 76500 = 36.43 mm
a +a, 1000+1100 2100

tUnit—1l_ {01 P57 |




Calculation for I,
Distance of C.G of section (1) from X—X axis,

hyy =Y -y; =36.43-5=31.43 mm
Distance of C.G of section (2) from X-X axis,

hy, =Y -y, =36.43 - 65=-28.57 mm
Moment of inertia of section (1) about an axis parallel to X=X and passing
through its C.G (G4),

_ bid?®  100x103

I = TR =8333.333
Moment of inertia of s&8tbn (2) about an axis parallel to X—X and passing
through its C.G (G1R

b,d,3 3
22 101107 4109166667

Gx2 ~
12 mm#

According to parallel axis theorem,
the moment of]igertia of section (1) about X—X axis,
Lt = gyt +@1h% =§333.333 + [1000 x 31.43%] = 996178.233 mm*

Similarly,
Lo = Igeo + azh2 }7—21109166.667 +[1100 x (-28.57)%] = 2007036.057
4

mm
Moment of inertia of the whole section about X—X axis,
Ly = Ligq + Ly = 996178.233 + 2007036.057 = 3003214.29

XX

=[3.0032 x 10°

mm?*
Calculation for Iyy

Distance of C.G of section (1) from Y=Y axis,
hy=X-%;=2643-50=-23.57 mm

Distance of C.G of section (2) from Y=Y axis,
hy=X-X%Xy=2643 -5=21.43 mm

Moment of inertia of section (1) about an axis parallel to Y-Y and passing
through its C.G(Gy),

d1b13 _10x 1003
Gyl T = 8343333.333
Moment of inertia of section (2) aB8t an axis parallel to Y=Y and passing
through its C.G(G3),

dyb,> 110 x 103
Gy2 12

[ =9166.667 mm*

12 tUnit—1ll__ {00 { P5.8 1




According to parallel axis theorem,
the moment of inertia of section (1) about Y-Y axis,

=1. +a,hy 2
T Gl 17 =833333.333+ [1000 x (-23.57) 1= 1388878.233
XZmnﬂ.66.667 + [1100 x 21.432] =514336.057
4

yy
=1. _+ azhz

IyyZ Gy2
mm
Moment of inertia of the whole section about Y-Y axis,
Ly =Ly +1jy = 1388878.233 + 514336.057 = 1903214.29
=[1.9032 x 108
mm*

Calculation for K,

Radius of gyration about centroidal axis X-
X) 1_

XX _ 3003214.29 _ 37 817 mm

K
=« {sa {2100

Calculation for Kyy

Radius of gyration about centroidal axis Y-

Y, Ty I—
19032

21=

Result= 1) T%moment of inertia about centroidal axes,
I,=2.088 x 10°mm*; I, = 1. 2974 x 10® mm*
2) The radius of gyration about centroidal axes,
K,, =37.817 mm; K, =30.105 mm

| Example : 5,1o| (Oct.03, Oct.04, Apr.13, Apr.18)

Find the values of 1, and 1, of a T-section 120mm wide and
120mm deep overall. Both the web and flange are 10mm thick. Also
calculate X, and K.

Solution :

|This section is symmetrical about Y=Y axis. So the C.G will lie on this |

axis. - X= 120 _ 60 mm

2
a;=120x 10 =100 mm?% a,=10 x 110 = 1100 mm?
y1=%=5mm; ¥ =120+m:65mm

a +a
v =01 %Y= (1200 x 5) + (1100 x 65) - 77500 = 33.696
mm

a;+a, 1200+1100 2300
tUnit—11l__ {00 { P5.9 1
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Fig.P5.10 M.I of ‘T’ section [Example 5.10]
Calculation for I,

hy =Y -y =33.696-5=28.696 mm
hyy =Y -y, =33.696 - 65=-31.304 mm

b;d® 120 x 103
12 12
bd,* 10 x 1103

12 mm*

o = It * a1h* = 40000 + 1200 x (28.696)%) = 998152.5 mm*

= +
Lo = Lo * 2112 y2

= 1109166.667 + 1100 x (-31.304)% = 2187101.125
4
mm
L = Lt * Lyp = 998152.5 + 2187101125 = [3.185 x 10°mm

=10000 mm*

Gx1 "~

s =1109166.667

Calculation for Iyy
hy =X-%; =60-60=0
hy=X-%,=60-60=0
_ dib?  10x 1203
Gyl 12 12

d,b3 3
I = 2122 - 1101"210 = 9166.667 mm*
= IGyl alhz

.1 = 144000 + 0= 1440000 mm*
=1 _+ahy 4
w2~ Gy2" 2% =9166.667 + 0 = 9166.667 mm
tUnit—111__ 100 1 P5.10 !
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lyy = Lyy1 + 1y, = 1440000 +9166.667 = [1.449 x 106 mm]

Calculation for radius of gyration

Ko {sz_’i.f%{ 37.213 mm|
- Ty —234g
K, Qx10°
yy ya = { =
Result:3) 1,, 53 185 x 10°mm* 2) I, = 1. 449 x 10° mm*
3)K,, =37.213 mm 4) Kyy =25.1mm
|[Example : 5.11 (Apr.90)

Calculate 1, and 159 for the section shown in the fig.P5.11.
Also find K, and K.

140

e | £S5
@ 7
A e 7
| |
x| [
'G
5 |
® |
|
3u! 50 [ f\

Fig.P5.11 M.I of ‘T’ section [Example 5.11]
Solution :

a,= 140 x 30 = 4200 mm?; x =&g= 70 mm; y 552 = 15 mm

N I©

a,=50x90=4500 mm?; x =30+ a0 —55 mm; y = §0+ 20 _75 mm

X= i 2o (4200 x 70) + (4500 X 55) = 5415100 = 64.241 mm

a;+a, 4200+4500 8700

+
v =171 %Y - (4200 x 15) + (4500 x 75) _ 400500 = 46,034 mm

a,+a, 4200+4500 8700
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Calculation for [,
hy1 =Y -y; =46.034-15=31.034 mm
hy, =Y -y, =46.034-75=-28.966 mm

b;d? 140 x 303

= = =315000 mm*
@1 Ty 12 i
b,d,3 3
o= 22 50x907_ 50375 4 106 mm?
12 12
La = loa a2 )
= 315000 +[4200x(31.034)%)=4360058.455
4
Lo T, + a2,

= 3.0375 x 106+ 4500x(-28.966)=6813131.202
L = Loy * L J360058.455 + 6813131.202 = [11.173 x 105mm ]

Calculation for Iyy
hy1 =X -%1=62.241-70=-7.759 mm
hy =X -X, =62.241-55=7.241 mm

d;b3 3
= T _ 30> 140°_ ¢ a6 4 105mm?

Wl 2 712
d,b3 3
l,,= —2 = 20x50%_ 537500 mm®
y 12 12

Loa=lgntahz = 6.86x10°+4200x(-7.759)*=7112848.74 mm*

L= 1ot 302, =937500+ [4500%(7.241)% = 1173444.365

I

4
7112848.74 + 1173444365 = [8.2863 x 106
mm?*

yy =Lyt + lyy2 =

Calculation for radius of gyration

3
K | {%6{ — [35.836mm
i 6

1
<
<

Kyy t5a ¢
Q70

ResW 1) o, = 11.173 x 10°mm*2) I,y = 8.2863 x 10° mm*
3)K,, = 35.836 mm 4) K,, =30.862 mm
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|[Example : 5.12] (Apr.05, Oct.12)

A channel section is of size 300mmx100mm overall. The base as
well as the flanges of the channel are 10mm thick. Determine the values
ofI,,and 1 .. A.lso find K,, and K.

100

!
|

A |
= ® |
|
. |
—] =
2 “‘—"—i‘—'————
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i v
El Il
I 10 : B Ty Q

Fig.P5.12 M.I of channel section [Example 5.12]

Solution :
|This section is symmetrical about X=X axis. So the C.G will lie on this |

axis ~Y =390=150 mm
2
a;=az=100x 10 = 1000 mm? az— 10 x 280 = 2800 mm?
X{=X =M—503mm x =0=5mm
2 5 2
X =X+ ApXp + a3X3

a010+ a§+ a3
(1000 x 50) + (2800 x 5) + (1000 x 50) 114000

= - =23.75 mam——
1000 + 2800 + 1000 480

0

Calculation for I,
hyy =Y -y =150 -5=145mm

hyzzY_—y2:150—(10+M =0mm

hys =Y -y =150- 19+280+10
=-145mm b.d3 )

13 =1 = 2190 _ 100x10°_ ginga0s e

Gx1 Gx3 12 - 12
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_ byd® 102803
Gx2 12 4
mm
Lt = Igya + a1/ =§3333.333 +[1000x(145)*=21.0333x10°mm*

=18.2933 x 10°

Loz = laxz + a2h? 5,18.2933 x 10°+2800x(0)%=18.2933x10° mm*

Lo = loxs * 3% = $3333.333+[1000x(145)%=21.0333x10° mm*

[ =1 +1 _+I

XX xx1 Xx2 xx3
= 21.033 x 10 +18.2933 x 10° + 21.0333 x [0, 36 x
106 = 10°mm?*

Calculation for Iyy
hyy =X -x, = 23.75 - 50 = -26.25 mm
hy=X-x%,=23.75-5=18.75 mm h,,
=X - xg= 23.75 - 50 = 26.25 mm
I 1b” _ 10 x 1003

Gy1 = Loy3 = TR =0.8333 x 10°mm*

= 9B’ 280x103
Gy2 12

= +
Iyyl IGyl alhz

=23.333x 103
mm*
5 0.8333x10°+1000x(-26.25)%1.5224 x 10°
4

= + m
Iyy2 IGyZ azhz ,
X

= 23.333x10% + [2800x(18.75)% =1.0077x10
Lyys = Lyy = 1.5224 % 16°mm

Iyy= Iyy1+ Iyy2+ Iyy3

=1.5224x105+1.0077x106+1.5224x10°=|4.0525x105 mm*

Calculation for radius of gyration
T — 6036

Ko (g0 ( —— (112138 mm
K,y 0=, 4.0525x10°_ 159056 mm
a

490

NESUILE 1) 1,5 60.36 x 10° mm* 2) I, = 4.0525 x10° mm*
3) K,,=112.138 mm 4) K, = 29.056 mm

[Example : 5.13]

Find the moment of inertia of the section shown in the fig.P5.13
about the horizontal centroidal axis. Also find the radius of gyration

about that axis. r— i i i
tUnit—111__10 | P5.14 1
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Fig.P5.13 M.l of channel section [Example 5.13]

Solution :

a;=a,=15x (80 - 15) =975 mm?; a;= 80 x 15 = 1200 mm?

yi=y =15+225475mm;y =21—5=7.5mm

v =8, Ty, TRY, (975 x 47.5) + (1200 x 7.5) + (975 x

65

475) 31 + az + 33

_101625
Calculation for I, 3150

975+ 1200 +
975
=32.262 mm

hyy =hy, =Y -y, =32.262 - 47.5 = -15.238 mm

hyz =Y -ys=32262-75=24762mm

1 =1 — bldl3 _ 15 % 653
Gx1 Gx2 12 12
b.d 3 3
3 80 x15° 22500 mm*
312

Los=
I =IGX1GX§1h2

xx1 yl

=343281.25 mm*

= 34328125+ [975 x (- 15.238)2]=569672.978
mm* I, =, =569672.978 mm4

L3 = Lgys + agh? =}%2500+[1200x(24.762)2]=1758287.973 mm*

= + +
IXX Ixxl IXXZ IXX3

Radius of gyration, K, { ng—)i-ﬁﬁ {

=569672.978 + 1758287.973 + 569672.978 [ 1,8976 x 10°
4

T 1I897%m
—— |25.544 mml

[FeU1)1,,21.8976 x 106 mm*2) K, = 24544 mm |

{ Unit — 11
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|[Example : 5.14| (Apr.02, Oct.13)

Determine the moment of inertia about centroidal co-ordinate
axes of an I-section having equal flanges 120mm x 20mm size and web
120mm x 20mm thick. Also find K, and K,,..

120 |Y
= l ®
l
20 = X _j{ _____ X
2. G
|
|
] )
A |
= | ®

Fig.P5.14 M.I of ‘I’ section [Example 5.14]

Solution :

|This section is symmetrical about X=X and Y-Y axis. |

~X =120 _ 60 mm; y =160_gg

a; =a; 2120 x 20 = 2400 mm?%; a, = 20 x 120 = 2400 mm?

20 120 %

X1=X =X =60r@m' y =—=10g1m; y =20+

80 mm; 2
y+= 20+ 120 +2 2=t 150 mm; Za = 2400 + 2400 + 2400 = 7200 mm?
Calculation for I,

hyy =Y -y, =80-10=70 mm

hyz—Y -y, =80-80=0mm

hy3 =Y -y3=80-150=-70 mm

. _ bid® 120x203
loi1 = o= o= 17 - 80000 mm*
byd,® 20 x 1203
Gx2 - 12 = 2 88 X 106

Lt = g1 + agh?= 0000+ [2400 x (70)2]—11 84x106mm
12 {ynit—m__}0 [ P5.16 |




IXXZ = IGXZ + ath = 2 88 x 106+ [2400 X 02] =2.88 x 10 mm*
%XX3 -IIGX3 +I a3h2 }goooo + [2400 x (- 70)2] 11.84x106mm*

XX XXZ

11845 100 + 2,88 x 10 + 1184 x 10°[ 26,56 x 106
= mm4—

Caleulation for s _ ;. =X -x, = 60 - 60 = 0 mm
|o=p = dib’ 20x1203
Gyl Gy3 12 - 12
d,bd
= 2 = 80000 mm*
12120 x 203

Iyylzlyy3=IGy1+a1hz o =2.88x10°+0=2.88x 10° mm*

+ azh]g2 , =80000 + 0 =80000 mm*

=2.88 x 10°mm*

Gy2

IylyZ = IGy2 I

= + +

yy yyl  yy2  yy3
=2.88 x 106 + 80000 + 2.88 x 106 = 5. 84 x 105 mm]

Calculation for radius of gyration
T — 26.56

K, {25)%6{ """ [60.736 mm

- ty 7283

Ky, 9x106{ 7 [28.480 mm
Ya = =

NesUIt£1) 1, 6. 56 x 10°mm* 2) 1, =5.84 x 10° mm*
3) K,, = 60.736 mm 3) K, = 28.480 mm

[Example : 5.15]| (Apr.04, Apr.15, Oct.17)

An I-section has the top flange 100mm x 15mm, web 150mm x

20mm and the bottom flange 180mm x 30mm. Calculate 1,, and Iyy of
the section. Also find K,, and K, of the section.

Solution :
|This section is symmetrical about Y-Y axis. |
)Z -180_ 90 mm
2
a, =180 x 30 = 5400 mm?; y =3—2= 15 mm

a, =20 x 150 = 3000 mm?% y, = 30 150 =105 mm

a; =100 x 15=1500 mm?; y;=30+ 150+ 1; 187.5 mm
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Fig.P5.15 M.I. of ‘I’ section [Example 5.15]
Y =a1y1 Ay, +azy;
a;tap+aj
_ (5400 x 15) + (3000 x 105) + (1500 x
187.5) 5400 + 3000 +

= 677250 _ ¢4l 500m
9900

Calculation forl,,
hyy =Y -y; =6841-15=>53.41 mm

hyy =Y -y, =6841-105=-36.59 mm

hy3 =Y -y3=6841-187.5=-119.09 mm

b,d>3 3
log = L - 180%307_ 405 106 mm*
12 12
b,d.? 3
2= ——= 20 x150°_ & 625 x 106 mm*
12 12
b.d 3 3
3 100 x15°_ 28125 mm*
_12—

[..=3
Lt = Ioxy Faph2 =}82405x1O6+[5400x(53.41)2]=15.809x106 mm*
Lz = laxa + a2h? 5,5.625 x 10543000%(~36.59)%=9.6415 x 10 mm*
s = laxg *+ a3h? = 28125+1500%(~119.09)%=21.302 x 106 mm?*
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I =1 +1 _+1

XX xx1 XX2 xx3

=15.809 x 10°+9.6415 x 109+ 21.302 x 10°= | 46. 7525 x

. 10°mm*
Calculation for Iyy

By =hy =hg =X-% =90-90=0mm

_1 - dib® 30x1803
IGy1 - IGy3 = 7 - o 14.58 x 10°mm*
d,b3 3
Gy2 22 =150xzo=0.1><106mm4
y 12 12
dsb3 3
lg= 20 12x1007 55 106 mme
y 12 12
L3z vahe | =14.58x 100+ 0 = 14.58 x 10 mm*
Iyy2= lyat M2 5 =0.1%10%+0=0.1x 10° mm*
Ly3=lgstashz 5 =1.25%x100+0=1.25x 10 mm*

I =1 +1 _+1
yy yyl yy2 yy2

=14.58 x 106+ 0.1 x 106+ 1.25 x 106= [15.93 x 10°

7
Calculation for radius of gyration et
T 46.7525
K X5  —————  [68.72mm
w {g%10% { —3900 [68.72 mml]
- Ly — ——1593
K x106 " [40.119 mm
vy {2 ={ =
Nesult 1) 1, Gy46. 7525 T00mm? 2)1,, =15.85
x 10° mm*
3TK..=68.7Z mm 7] K, = 40.119 mm

|[Example : 5.16| (Oct.01)

A rectangular hole of breadth 60mm and depth 100mm is made

at the centre of rectangular plate of breadth 120mm and depth 200mm.

Determine the moment of inertia of the hollow plate about its centroidal
axis. Also find K., and K.,...
Solution :

a; =120 x 200 = 24000 mm?; a, = 60 x 100 = 6000 mm?;
Sa=a, -a, = 24000 - 6000 = 18000 mm?
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Fig.P5.16 M.I. of hollow rectangular section [Example 5.16]
Calculation for I,
Moment of inertia of outer rectangle about X-X axis,
| = bid’® 120 x 2003
xx1 12 4
Moment of inertia Of inner rectangle about X-X

axis, Lo b}d?f _ 60 x 1003

XX2 12 m4
Moment of inertia of {He whole section about X-X

axis, - 12] ,=80x10°-5x106= [75x 10 mm*

Calculation for Iyy

=80 x 10°

=5x10°

Moment of inertia of outer rectangle about Y-Y

axis, d.b3 200 x 1203
[,= 11= =28.8 x 10°mm*

yyl 12
Moment of inertia of inner rectangle about Y-Y
axis, dJg3 100 x 603
L= 2 =1.8 x 10° mm*
s 12

Moment of inertia of the whole section about Y-Y

: 12
xS, =1y = 1, =288x 100~ 1.8 x 10°= 27 x 10° mm*

Calculation for radius of gyration
— —

K 107 ——— [64.55mm
{Za B {
18000

tUnit—111__ 100 {1 P5.20 !




lyy 27 x
Kyy — 38.73 mm

{v = { 10000 —
Result£1)1,,=75% 106 mm*  2) I, =27 x 105 mm*
3) K,,=64.55 mm; 4) K, =38.73 mm
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Chapter 6. THIN CYLINDERS AND
THIN SPHERICAL SHELLS

1.

Introduction

Some engineering components like pipes, steam boilers, liquid

storage tanks and compressed air reservoirs have greater strength by

virtue of

their curved shape more than the material by which they are made.

These are called shells. Generally the walls of such shells are very thin

and compared to their diameter. Shells having cylindrical and spherical

sha

pes are widely

used. Whenever a shell is subjected to an internal pressure, its walls are

subjected to tensile stresses. The shell wall will behave as a membrane

cyli

ndrical shells.

in [which Gthdnstytissbdcatelaligential o theThikddylisirfaabshlhe wal
unifohalyhickness of this cylindrical| The  thickness  of  this
distsibeitedigcisss itsathitka@sso 1/15(cylindrical — shell is greater
times of jts diameter. than 1/15 times of its
1. |Comparison of thin and thick cyl'“cﬁg'r%%kér.e"s'
2)| The normal stresses are assumed|The normal stresses are not
to be uniformly distributed|uniformly
throughout the wall thickness distributed.
3)|Longitudina stress is uniformly| Longitudinal is not
1 stre
distributed ss uniformly
distributed.
éf.k‘ Abguntpith &ﬁ’éeﬁ?ala@iﬁe&é&%r%f t ﬁ\f‘é\ﬁfh\il?]i%losfﬂéﬁ?l wiesyls
smal]rﬁn(} il n\/v%qeacg%mlmnhnnc ardm (]11 Whl]P designing thi
n

1) The normal stress distribution over a cross section is uniform.

2) Radial stress is small and hence neglected.
3) Loading is assumed to be uniform by neglecting the self weight of

the shell.

tUnit— 11|
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4) Cylindrical shell is assumed to be subjected to an internal pressure
above the atmospheric pressure.

5) Degradation of wall due to corrosion and chemical reaction of
contents is neglected.

6.4 Failure of thin cylindrical shell due to internal pressure
Whenever a thin cylindrical shell is subjected to an internal

pressure, its walls are subjected to tensile stresses. If the tensile

stresses exceed . — y fail in any one

of the following

Fig.6.1 Failure of thin cylindrical shell

1) It may split up into two troughs
2) It may split up into two cylinders.

5. Stress in cylindrical shell due to internal pressure
Whenever a thin cylindrical shell is subjected to an internal
pressure, its walls will be subjected to the following two types of

tensile stresses.
1) Circumferential stress or hoop stress
2) Longitudinal stress

1) Circumferential stress or hoop stress

Consider a thin cylindrical shell subjected to an internal
pressure as
shown in the fig.6.2. As a result of this pressure, the cylinder may split

up in to two troughs.
Let, 1 TUnit— i =1 i i Length of the shell
d = Diameter of the shell




t = Thickness of the

p = Intensity of

&

Od-
Fig.6.2 Circumferential stress or hoop stress

Let us consider a longitudinal section through the diameter of the
shell.

Total force normal to this section

= Intensity of pressure x Projected area
=px(dx1)=pdl

Resisting force offered by this section

= Circumferential stress x Area of the resisting section
=f,(2t]) = 2f;tl
Resisting force offered by the section = Total force normal to the section

pd = zt)}tl

fi=oa= |—

p

2) Longitudinal stress d

Fig.6.3 Longitudinal stress
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Consider a thin cylindrical shell subjected to an internal
pressure as shown in the fig.6.3. As a result of this pressure, the
cylinder may split up in to two pieces.

Let, 1 = Length of the shell

d = Diameter of the shell

t = Thickness of the shell

p = Intensity of internal pressure and
fr = Longitudinal stress

induced in the shell Let us consider a normal
section at equilibrium.

The bursting force acts on one end of the shell
= Int%nsity of pressurex Area
=px= d2
4
Resisting force offered by this section
= Longitudinal stress x Area of the resisting section

= f(ndt)
Resisting force offered by thﬁ@ﬁgt'y)ﬂp—r B}#@t?ﬂg force acts on one end

= '4-'[' -
2 vdt

6.6. Maximum shearktress
Letf; and f, be the circumferential stress and longitudinal stress

acting at any point onts circumference of a thin cylindrical shell.

pd _ pd

&
-

fi-52 d

The maximum shear fs= =

t 2 4l
stress, 2
6.7 Changes in dimensions of a thin cylindrical shell due

to an internal pressure
Consider a thin shell subjected to an internal

op

L

Let, pressu r(.“frlll"cumferentla or hoop stress which acts in the
direction perpendicular to the axis of the cylinder.
f1= f, = Longitudinal stress which acts in the direction of length.

e, = Circumferential strain

e, = Volumetric strain

Y = Volume of cylindrical shell
1/m = Poisson’s ratio

tUnit—1ll_ {1007 6.4 1




6d = Change in diameter of the shell
and

We knof¥ tifa-oakgenifength §€1t51%,sge1=1 1 1

Also, longitudinal strain, ., - —

~ Change in length, 61 =e x1= |=

Volume of the cylindrical shell, Y = ¥4d21

Taking log on both

sides, logY = 1ogy4+ log d? +1logl

logY =1ogy+210gd+logl
4

Taking differential on both
sides, gy —04+20d, 6l 5, ie
Y d

2f 1__1 fizl 1

= ?( Zm) * m)
h 2 - 1,1_

= E( mE+(§

{Unit—1112 {1 65 |
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=t m
f1 5_2
6Y = E(Z m)
Change in 6Y = fi 2.5 _
volume, 2 g E

6.8 Thin spherical shells m)
Consider a thin spherical shell subjected to an internal

pressure as shown in the fig.6.4

Let, p = Intensity of internal pressure
d = Internal diameter of the spherical shell
t = Thickness of the spherical shell
As a result of this internal pressure, the shell is likely to be torn

away along the centre of the snhere

Od

Fig.6.4 Thin spherical shell
Let us consider a section X-X through the centre of the
shell.

The purgtipg drycsRstiahalgiesdre x Projected area = P * L\}_/ dz

Let f; be the tensile stress induced in the shell at the section X-
X.

Resisting force = Tensile stress x Resisting area =f; x vdt

But, resisti ce = Bugsting force
FRadfpcg g

pd
f1= 47—
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The tensile stress induced in Y-Y axis,  _ » _ pd
fo=f1=4t—

If ) is the efficiency of the riveted joint of the spherical shell,

then

Stress, f = ZT

n
6.9 Change in diameter and volume of thin spherical shell

subjected to an internal pressure
Consider a thin spherical shell subjected to an internal pressure

as
shown in the fig.4.4
Let, p = Intensity of internal pressure

d = Internal diameter of the spherical shell

L{m=Rolssais 82t spherical shell

The tensile stress induced in any direction due to the internal
pressure, pd

f1:f2:ff:14t

_ 1 . 1
rg=e=e= E(l _4tE(1

The strain in any direction )
m

. 2 d?
Change in 6d =exd = p_} 1}1)4tE1_(
diameter, m

Original volume of the shell, Y =vds

Taking log on both sides,
logY =log¥+logd3 =log¥+3logd
6 6

Taking differential on both sides,

6Y 6d pd 1
— =0+3""=3e g3x F— 1-—=
y ~°F AR m
Change in volume, oy _ 3, _ﬂ@ _4tiE_
4tE m)Y
N
1V
. Vpd4 1- 1 X
Change in 6Y = — —
volume, StE m) 9‘1)‘t
m
6
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(SOLVED PROBLEMS)

DETERMINATION OF HOOP STRESS AND LONGITUDINAL

| Example : (Apr.01, Apr.15, Apr.17)
6.1

A ,boiler 2.8m diameter is subjected to a steam pressure of
0.68N/mm . Find the hoop stress and longitudinal stresses, if the
thickness of the boiler plate is 10mm.

“GIvem: DTAMeter Ot DOIET, d = 2.8 M = 2800
mm Internal pressure, p = 0.68 N/mm?
Thickness of the cylinder, t = 10 mm

To find : Hoop stress, f; 2) Longitudinal
stress, f>
Solution;; kd = 2
olutiofoop stress, f1 = ¢ = 5 %10 ~195.2
X

N/mm

Longitudinal stress, f, =%—1u§&ﬂ@ 17. 6 N/mm?

Result : 1) Hoop stress, f; = 95.2 N/mm?
2) Longitudinal stress, f, = 47.6 2

N/mMm

A water pipe 1.5m diameter a,nd 15mm wall thickness is
subjected to an internal pressure of 1.5N/mm . Calculate the
circumferential and longitudinal stress induced in the pipe.

Given : Diameter of pipe, d = 1.5 m = 1500mm
Wall thickness, t = 15 mm
Internal pressure, p = 1.5 N/mm?

To find : 1) Circumferential stress, f; 2) Longitudinal
stress, f,

SofytiQfhiferential st =pd=15x1500=
erential stress, f1 4 x 7E N/mm?2
i i = L = 75 =
Longitudinal stress, f, 2 1S B7.5 N/mm

Result : 1) Circumferential stress, f; =75
N/mm?
2) Longitudinal stress, f, = 37.5 N/mm?

tUnit—11l__ 10 1 P6.1 1




(Apr.04)

A boiler 3m internal diameter is subjected to a boiler pressure
of 5bar. Find the hoop and longitudinal stresses, if the thickness of the
boiler plate is 14mm.

Given : Diameter of boiler,d =3 m = 3000 mm
Thickness of plate, t = 10 mm
Steam pressure, p = 5 bar= 5x 10°N/m?2= 0.5 N/mm?

To find : 1) Hoop stress, f; 2) Longitudinal stress, f,

Solution :

pd
Hoop stress, f;= 5 ¢ =

Longitudinal stress, f, =

Result : 1) Hoop stress, f; = 75 N/mm?
2) Longitudinal stress, f, =37.5 2

A NAZER 2
7T

Examplé: (Oct.97, Apr.93, Oct.04)
6.4

A gas cylinder of internal diameter 1.5m is 30mm thick. Find the
allowable pressure of the gas ins,ide the cylinder if the permissible
tensile stress is not to exceed 150N /mm .

Thickness of the gas cylinder, t = 30 mm
Permissible tensile stress = 150 2

To find : 1) Allowdb{8WRessure of gas inside the cylinder,
p
Solution :
Assume the given tensile stress as hﬂppdstress.

We know that, hoop stress, f; = 2t

150 = % 1x500 0
~195707"x"2 x 36 >
P
|Result : Allowable pre@sure of gas inside the cylinder,p=6
N/mm*=
Example: (Oct.03)
6.5

A thin cylin,drical shell of 1m diameter is subjected to an
internal pressure of 1IN/mm . Find the suitable thickness, of the shell, if

the tensile stress in the material is not to exceed 100N /mm .
o —1m_1- 1. P6.Z__]




Given : Diameter of the cylindrical shell, d = 1m = 1000 mm
Internal pressure, p = 1 N/mm?
Allowable stress = 100 N/mm?
To find : The thickness of the shell, t

Solution :

Assume the given tensile stress as hpoodp stress.
We know that, hoop stress, f; =o4

2xt
= 1x1000 _

2x100 @

|Result : The thickness of the shell, t = bmml

(0ct.03)

A thin cylind,rical shell of 2m diameter is subjected to an
internal pressure of 1.5N/mm . Find out the suitable thickness of the

ultimate tensile strength of the plate is 500N /2mm . Use a factor of
safety of 4.

Given : Diameter of cylinder, d = 2m = 2000 mm
Internal pressure, p = 1.5 N/mm?
Ultimate stress = 100 N/mm?
Factor of safety = 4
To find : 1) The thickness of the shell, t

Solution :

Working stress = —E;tclirolz;toefssgfeest; =5—40= 125 N/mm 2

Assume the given tensile stress as hoop
stress.

Hoop stress, f; = pZ_dt
2xt
_1.5x2000 _
t=42 X el = 7 mm
w15 MM
Result : 1) The thickness of the shell, t = 12 |
mm
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Example : (Apr.92)

6.7

A water main 500mm diameter contains ws ater at a pressure
head of 100mm. The weight of the water is 10KN/mm . Fin,d the

thickness of the metal required if the permissible stress is 25 N/mm .
aivern . DIdINICLEl O Wdlcl ITIdIIl, U = oUU ITIIII

Pressure head,# = 100 m =100 x 103
mm Permissible stress, f; = 25 N/mm?

Weight of water,r= 10 KN/mm?3 = 10;%N/mm3

To find : 1) The thickness of the metal,
t
Solutioninternal pressure of water, p = r x
oo =10x103,900 %103 =1
10°
Let the permissible stree be the hoop
stress

N/mm2

Hoop stress, f; = thL

25 =1x500
2xt

|Result: 1) The thickness of the metal required, t = 10

mm
Example : (Oct.97, Oct.01, Apr.05, Apr.18)

6.8

A long steel tube 70mm internal diameter and wall thicknes,s
2.5mm has closed ends and subjected to an internal pressure of
10N/mm . Calculate the magnitude of hoop stress and longitudinal
stresses set up in the tube. If the efficiency of the longitudinal joint is
80%, state the stress which is affected and what is its revised value.
'GIVE'n . UldIetler O UIe Stecl tuDe, d = 7 U I

Wall thickness, t = 2.5 mm

Internal pressure, p =

10N/mm?
Efficiency of the joint,n = 80 % =0.8
To find : 1) Hoop stress, f; 2) Longitudinal
t 1
stress, fy Hoop stress, f; = pd _10x70_ 444 N/mm?
Solution : : 2t , .
iUnit—11l__{L 1 P64 1
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140

Longitudinal stress, f, = %= =27O N/mm?

The hoop is affected by the longitudinal joint.
When the efficiency is

0.8,
Revised value of hoop stress, f; = 3 (tin_ 10x 70 3 17
x2.5x0.8
Result : 1)Hoop stress, f;=140 N/mm? 2)Longitudinal stress, f,=70
N/mm?
3) Revised value of hoop stress when the
effic,iency of longitudinal joint is 80%, f; =
175 N/mm

DN OF CHANGE IN DIMENSIONS.Qf, B, oct.17)

A cylindrical shell 3m long and 500 mm in diameter is made up
of 20 mm thick plat,e. If the cylindrical shell is subjected to an internal
pressure of 5N/mm , find the Result :ing hoop stress, longitudinal stress,
changes in diameter, length and volume. Take E = 2 x 10 mem and
Poisson’s ratio = 0.3.

Given: Length of cylinder,] = 3m =3000 mm
Internal diameter, d = 500 mm
Metal thickness, t = 20 mm
Internal pressure, p =5
N/mm?
Young’s modulus, E = 2 x 105 N/mm?
Poisson’s ratio, 1/m = 0.3

To find : 1) Hoop stress, f; 2) Longitudinal stress, f;
3) Change in diameter, dd 4) Change in
Solution : length Bl
. I _ 2 6
Volumaa- Hl VozfuL{ne, R\ 4 dl= 5 x500

x3000=589.0486x10 mm
Circumferential stress, fl = ,lgzl_ctl =5x%x500= 42 5 N/mmz

The longitudinal stress, f, =g—x=2602—'5 =3]. 25 N/mm?

Circumferential strain, ¢ =ElZ 1 f

f 1,
]

tUnit—11l__ {00 { P65 1
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__ 1 ~ —
= IX10° [62.5-0.3x31.25] = |2 65625 x 10

Longitudinal strain, ¢ =§[ 2 rlnf ]

- f
PR 6.25 x 10

Change in diameter, dd =e; xd =2.65625 x 107*x 500 = m

Change in length, 8l = e, x 1 = 6.25 x 107 x 3000 = (m

Change in volume, 0V = (Ze; + e,) x V

= (2 x 2.65625 x 107 + 6.25 x 10"5) x 589.0486 x 100

= [349.748 x 103 mm3|

Result : 1) Hoop stress, f;= 62.5 N/mm?
2) Longitudinal stress, f, = 31.25
By@hange in diameter, 6d = 0.1328 mm
4) Change in length, 61 = 0.1875 mm
5) Change in volume, 6Y = 349. 748 x 103

mm°

Examp[e . (Apr. 04, Oct.12, Apr.17)

6.10

2

Calculate the increase in volume of a boiler 3m long an,d 1.5m
diameter, when subjected to an internal pressure of 2N/mm . The
thickness; is such that the masximum, tensile stress is not to exceed
30N/mm . Take E = 2.1 x 10 N/mm and 1/m = 0.28. Also calculate the

changes in diameter and length.
Given: Length of the boiler shell, I = 5m = 35000

mm Diameter of the boiler shell, d =1.5m =

1500 mm
Internal pressure, p = 2 N/mm?
Maximum tensile stress, f; =30 N/mm2
Young’s modulus, E = 2.1 x 105 N/mm?
To find : 1) Increapgigsyalymaei®V /m = @2€hange in diameter,
3) Change in length, 81 ad

Solution :

Longitudinal stress, f, = £1= 2 ¥15 N/mm 2

Volume of the shell, V = ﬂ4x d?l
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= ﬂ4x 15002 x 3000 = 5.3014 x 102 mm3

Increase in volume, 0V =fE—1[ 2.5 —12 x

xV
= [2.5-2x028] x53014x10° =[1.469 x 160 |
5
%ZJL]_O_ 1mﬁ — -
Change in diameter,dd =~ ; f -
= ELY m
xf i x d
= 2130 - 0.28 x 15] x 1500 =[ 0. 1843
PEPE
2.1 x Omm
. 1 1
Change in length, 6l = 2 f -
El m
xf x ]

= jh—5[15 - 0.28 x 30] x 3000 =] 0.0943
2.1 x10mm

3

Result : 1) Increase in volume, 6Y =1.469 x 10 mn{
2) Change in diameter, 6d = 0. 1843 mm
3) Change in length, 61 = 0. 0943 mm

THIN SPHERICAL SHELLS
[Example : 6.11

A vessel in the shape of a thin spherical shell 2m in diameter
an,d 5mm thickness is completely filled with a fluid at a pressure of
0.IN/mm . Determine the stress induced in the shell material.

Given : Diameter of the shell, d =2 m = 2000 mm

Thickness of the shell, t =5 mm
Intensity of pressure, p = 0.1 N/mm?

To find : 1) Tensile stress, f
Solution : pd

Tensile stress, f = 4 = AxE -
X
Result : Tensile stresgf}—é%-%QlQ/ mm?

[Example : 6.12

A spherical v,essel of 3m diameter is subjected to an internal
pressure of 1.5 N/mm . Find the thickness of the plate, if the maximum
stress is not to exceed 90 N/mnf . The efficiency of the joint is 75%.
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Given : Diameter of spherical shell, d =3 m = 3000 mm
Internal pressure, p = 1.5 N/mm?
Tensile stress, f = 90 N/mm?
Efficiency of the joint,n = 75 % =0.75

To find : The thickness of the plate, t

Solution :
d
We know that, tensile stress, f = Z_m
4 xtx0.75

_—15x3000 _ [6667mm)

90 x 4 x 0.75

|Result: 1) The thickness of the plate, t = 16.667 |

mm
Example:
6.13

(Oct.01, Oct.18)

Determine the change in diameter and change in volume of
spherical shell 2m, in diameter and 12msm thick,subjected to an
internal pressure of 2N/mm . Assume E = 2 x 10 N/mm and Poisson’s

ratio = 0.25.

Thickness of the shell, t =12 mm
Internal pressure, p = 2 N/mm?
Young’s modulus, E = 2 x 10° N/mm?
Poisson’s ratio, 1/m = 0.25

So

To{fmd 1) Change in diameter, dd 2) Change in
VONBIRAY of shell, v = B d & x 2000 = 4. 18879 x 10 mm  °

Strain in the spherical s‘ﬂell, e =f73 [1 - rﬁ] = ME [1 ~m]

2 x d
= 1-0. =3.125x 1074
e LR

Change in diameter, 0d =e xd =3.125k 10* x 20

mm

Change in volume, 0V =3e x V
=3x3.125x 107 x 4.18879 x 109 = [3.927 x 106 mm3|

Result : 1) Change in diameter, 6d = 0.625 mm
2) Change in volume, 6Y = 3.927 x 10° mm?3
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Example: (Apr.01, Apr.13)
6.14

Determine the depth to which a spherical float 200mm
diameter and 6mm thickness have to be immersed in watezr in ord,er
that its diameter is decreased by 0.05mm. As;sume E =2 x 10 N/mm ,
1/m = 0.25 and weight of water = 9810 N/m .

Given : Diameter of 1loat, d = 200 mm
Thickness of float, t = 6 mm
Change in diameter, dd = 0.05 mm
Young’s modulus, E = 2 x 105 N/mm2
Poisson’s ratio, 1/m = 0.25
Weight of water, r = 9810 N/m3=9810 x 10~ N/mm?3

To find : 1) Depth to which float to be immersed, 7

soC’"htaiogllg'(ﬁ:in diameter of spherical float,

od = ——
4tE[

2002
065—21—‘3]’(7[1—0.25]
x 6 x2x10°

p_005x4x6x2x10 =8 N/m 2
2007 m
We know that, pressure,p=rxh
h=B= — 8  _[315494.39% ]
mm
Result : 1) Depth to which float to be immersed, h =815494.394
m 9810 x 10
Example: (Apr.01, Oct.16)
6.15

A spherical shell of 1m internal diameter angd 5m;m thick is
filled with a fluid until its volume increases by 0. 2 x 10 mm .
Calcu,late the pressure exerted by the fluid on the shell. Take E = 2 x 10
N/mm, 1/m=

0.3 ;or the mat$r§'ql. .

Thickness of spherical shell, t = 5 mm

Increase in vo u{ne oV = 0 2 x 1
Young's modulu

Poisson’s ratio, l/m . 0.3

IJJ%\I/mm

To find : 1) Pressure exerted by the fluid, p
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Solution :
Volume of shell, V = 6J‘I>< d 236 x 10005 5.23§ x 10 mm

pd 3 1
Change in volume of spherical shell, 8V = 3 x AtE [1 - rﬁ] xV
3 x p x
02x10%= ———"—  [1-0.3]x5.236x10°
43080 2 x 105 [ |

5
p=02x10°x4x5x2x10°_( 7576 N/mm2
3 x 1000 x 0.7 x 5.236 x 108
Result : 1) Pressure exerted by the fluid, p = 0.7276 N/mm?

boiler.
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Unit - IV
Chapter 7. THEORY OF TORSION

1. Introduction

Power 1is generally transmitted through shafts. While
transmitting power, a turning force is applied in a vertical plane
perpendicular to the axis of the shaft. The product of this turning force
and distance of its application
from the centre of the shaft is known as torque, turning moment or
twisting moment. A shaft of a circular section is said to be in torsion

when itis subjected to torque.

1. Pure torsion

A circular shaft is said to be in a state of pure torsion when it is
subjected to pure torque and not accompanied by any other force such
as
bending or axial force. Due to this torsion, the state of stress at any
pointin the cross—section is one of pure shear. The shearing stress thus
induced in the shaft produces a moment of resistance, equal and

opposite to the applied
torque.

1. Assumption made in theory of pure torsion
The following assumptions are made in the theory of pure

torsion which relates shear stress and the angle of twist to the applied
torque.

1) The material of the shaft is uniform throughout.

2) The material of the shaft obeys Hooke’s law.

3) The shaftis of uniform circular section throughout.

4) The shaft is subjected to twisting couples whose planes are

exactly perpendicular to the longitudinal axis.

5) The twist along the shaft is uniform.

6) Stresses do not exceed the limit of proportionality.

7) All diameters wiﬁéﬂi_brﬂlﬁ;r_aiiguibgfdraﬂvist remain straight
after twist.

8) Normal cross—sections at the shaft, which were plane and

3 9 Ly - q 1 B q . q



7.4 Derivation of torsion equation
f C&

S=
r

a) To prove

>
s sassaay

Fig.7.1 Shaft under pure torsion
Consider a shaft fixed at one end and subjected to a torque at
the other end as shown in the fig.7.1.
Let, T = Torque
1 = Length of the shaft
r = Radius of circular shaft
As a result of the torque, every cross section of the shaft is
subjected to shear stresses. Let the line AB on the surface of the shaft
be deformed to AB’ and OB to OB’ as shown in the fig.
Let, ZBAB’ = g in degrees
£BOB’ = & in radians
f, = Shear stress induced in the surface
C = Modulus of rigidity of the shaft material.
We know that,
Shear strain =Cha.m.ge in lengﬂBB’_:_tan s=g 0 (1)
Original length 1
Since ¢ is very small, tan ¢ = g
We also know that, arc BB’ = r&

BB' _r&
@ = == emeama=
1 2)
If f,is the intensity of shear stress on the outermost layel[,

then 1

Modulus of rigidity, C = ear f:g
strain
fs (3)
= T—CX
uating (2)and (3) =~ C = |5="
Fauating (2) and (3) = £ -
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Since &, C and | are constants, the intensity of stress at any
section of the shaftis proportional to the distance of the point from the
axis of the shaft.

b) To prove II:; L

Fig.7.2 Shaft under pure torsion

Consider a shaft subjected to torque T as shown in the fig.7.2
Consider an elemental area ‘da’ of thickness ‘dx” at a distance x’
from the centre of the shaft.
Let, r = Radius of the shaft and
f, = Shear stress developed in the outermost layer of the shaft.

Shear stress at this section ~ fsx X

Area of the elemental strip, da = 2ix x dx
Turning force on the elemental area = Shear stress x
Area = f% x 271x dx

r

= 2—;‘ x f (x2dx)
Turning moment (torque) of this element,
dT = Shear force x Distance of element from
P2 (e x =
r
I dy
Totél t'?rqﬂle can be found out by integrating the above

25fx

equation between ‘0’ and r’.
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2f 2af, x4t 4
Top S e et
4 0 0
T=2fr3lfds
2 ood
sg= 16T
6 s L3 22 T
£ C& (1)
We know that, § _ ==

r 1 2
Substituting the value of f_ in equation

(2) _16T _C& T _C&
==, |
Hdsxgz 1 3—2d4

T_C(&%
T
(3)
Where, J=ads which is known as polar moment of inertia

32

S —

11T L&
Combining equation (2) and (3) = 1= J

=
r
The above relation can be rewritten as | L = fS_; ] T-C&
= I
1 T
7.5 Strength of hollow shaft ]

Fig.7.3 Hollow circular shaft subjected to pure torsion
Consider a hollow shaft subjected to toque ‘T” as shown in the
fig.7.3. Let ry and r, be the outside and inside radius of the hollow shaft
respectively. Let us consider an elemental area ‘da’ at distance x ‘ from
the centre of the shaft and of thickness ‘dz’ as shown in the fig.
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Area of the elemental strip, da = 2mx.

ghear stress at this section, f _ :

X

Turning force = Stress x Area = fX r2111x dx = s 2m2dx
Iy

Turning moment (torque) of this element,

dT = Shear force x Distance of element from

axis
=2—ﬂfsx2dx.x=2—J1 f x3dx
Iy Iy
Total torque can be found out by integrating the above
equation betweenryandr;.

r
B 4r

Z.Hf X 1
T= S 3xd pi
STy xex r2 ]
= Lt )
2 g
2nf 11‘14 2
= I__
rl [r4

_ Znfs (dy/2)*-(dy/2)*
(dy2)! 4 ]
4nf da-ds

1
="d ; 4x16
1 [ ]

QN

4 _ d 4
v 1 2
T= 16 [
d1
7.6 Stregs distribution in the shaft under pure torsion

A, - Al e W
il (5 i

(i) Solid shaft (ii) Hollow shaft
Fig.7.4 Shear stress distribution
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The intensity of shear stress at any point in the cross—section of
a shaft subjected to pure torsion is proportional to its distance from the
centre. In other words, the shear intensity is zero at the axis of the shaft
and increases linearly to maximum of f;at the surface. The shear stress
at any point on the circumference is same. The intensity of shear stress
in hollow shaft is more or less uniform throughout the section.

7.7 Power transmitted by the shaft
Consider a rotating shaft which transmits power from one of its

ends to another.
Let, N = Speed of the shaftin rpm and
T = Average torque in KN-m
Work done per minute = Force x Distance
=Tx21N=2a1NT
. Work done per second _ 21N T (KN -m)

60
Power transmitted = Work done per second
p=2vNT (KW)
60

7.8 Polar modulus
The ratio between the polar moment of inertia of the cross—

section of the shaft and the maximum radius of the section is known as
polar modulus or polar section modulus. It is an important parameter,

generally used in the
design of shaft. It is denoted by Z.

Maximum ] r
For a solid Cir&ﬂmgl&gmpg d I
32 2
| Y
Z=, 2 S
2
us
= — d
For a hollow circular[gl’{gf)(,] - ﬂg(ji 41_ d 4) ) b= !
16 54 4
d*-d
Z = J‘ = 32 ( 1 } 12 :—V
(a4 g4 J(dl/z)
t ? 16d, 2B
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7.9 Torsional strength

It is defined as the torque developed per unit maximum shear
stress.
Torsional strength is also knovxi.n as the efficiency of a shaft.

Torsional strength ~ P

N

From the equation T _ fs

by
fS

- N

Therefore, torsional strength may also be represented by the
section modulus. For a given material and weight, a hollow shaft
withstands larger value of torque when compared to that of solid shaft.
Because for a given cross—sectional area, hollow circular section has
larger section modulus when compared to that of solid circular section.

7.10 Torsional rigidity or stiffness
Torsional rigidity or stiffness is defined as the torque required

to produce an unit angle of twist in a specified length of the shaft.

Torsional rigidity = T

R

From the equation T _ C&

J 1

I_d

& 1

From the above equation it is evident that torsional rigidity or

stiffness is the product of modulus of rigidity and polar moment of
inertia over a unit length of the shaft. For a given cross—sectional area,
torsional rigidity of a hollow circular shaft is larger when compared to
that of solid circular shaft.

7.11 Comparison of hollow shaft and solid shaft

Let, d = Diameter of the solid shaft
d; = Outside diameter of the hollow shaft
d, = Inside diameter of the hollow shaft

a) Comparison by strength consideration
Strength of the hollow shaft- Section modulus of hollow shaft
Strength of the solid shaft Section modulus of solid

Shaft i . i i i
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Tod,(d-d (q4-a*
T4 @ - dy x 43
16 z
For a given cross—sectional area a hollow circular shaft has
larger value of section modulus when compared with that of a solid
circular shaft. So the hollow shaft has more strength than that of a solid
shaft.

b) Comparison by weight consideration

Let, 1 = Length of both the solid and hollow
shaft
p = Density of both the material of solid and hollow shaft
A, = Cross-sectional area of the solid shaft

S
A, = Cross—sectional area of the hollovlv shaft

=pxIxA =pl~d
Weight of the solid shaft, W, = Density x Volum#
Weight of the hollow shaft, Wsh = Density x Volume

=pxlxA,=plZ(d?-d?

: . plvds
Weight of the solid shaft 4 d?

Weight of the hollow shaft - pl % . (=d 2_42

For a given material, length and torsional sﬁ‘larzlgtﬂ, e weight

of a hollow shaft is less than that of a solid shaft. When using hollow

shaft, the material requirement is considerably reduced.
W, - Wy A - Ay
% Saving in material = Ts x 100 = As— x 100
7.12 Advantages of hollow shaft over solid shaft
The following are the advantages of hollow shaft over solid
shaft.
1) A hollow shaft has greater torsional strength than a solid shaft
of same material.
2) A hollow shat has more stiffness than a solid shaft of same
cross— sectional area.
3) The material required for hollow shaft is comparatively lesser
than the solid shaft for same strength.
4) Hollow shaft is lighter in weight than a solid shaft of equal
strength.
5) The removal of core from large shafts increase their reliability.
6) The material in the hollow shaft is effectively utilized.
7) The shear stress induced in the hollow shaft is almost uniform
throughout the &b V11§ 7.8 |




(SOLVED PROBLEMS)

|Example : 7.1| (Apr.01)

Calculate the torque in a solid circular shaft 1220mm diameter, if
the shear stress is not to exceed 80N /mm?.

Given : Diameter of shaft,d = 120 mm
Maximum shear stress, f; = 80 N/mm?

To find : 1) Torque, T

Solution :

Torque in a solid circular

shafty _ 1ol 4> =% x80x120° = [27.143 x 106 N-_|

mimm

|Result: 1) Torque in the shaft, T = 27. 143 x 10°N- |
10

xample : 7.2

A solid steel shaft is to transmit a torque of 10KN-m. If the

shearing stress is not to exceed 45N /mm?, find the minimum diameter
of the shajt.

Given : Torque, T = 10 KN-m =10 x 10® N-mm
Maximum shearing stress, f, = 45 N/mm2
To find : 1) Minimum diameter of shaft, d
Solution :
Torqueg mléifg@é'sid circular shaft,

3 16xT 16 x 6
d= 110<>f510'6—_1'13177x10

JI X
d = [fbamm]

|Result: 1) Minimum diameter of the shaft, d = 104 mml

Example: 7.3

A hollow shaft of external and internal diameter of 80mm and
50mm is required to transmit torque from one end to the other. What is
the safe torque it can transmit, if the allowable shear stress is
%?\l/\Ie/rrmm External diameter of the shaft, d; = 80 mm

Inter diameter of the shaft, d, = 50 mm
Allowable shear stress, f, = 45 N/mm2
iUnlt—IV i P71 i




To find : 1) Torque transmitted by the shaft,

T
Solution :
Torque transmltted b@ej@ﬂgwyrcular 804 -
haf 2
shaft, | gge « £, 4, 16

= |3.834x 106 N- |
|Result: 1) To{“lfflllle transmitted by the shaft, T = 3.834 x 10° N- |

NI

Example : 7.4 (Oct.12, Apr.15, Apr.17)
Calculate the power transmitted by a shaft 100 mm diameter

running at 250 rpm, if the shear stress in the shaft material is not to

exceed /5N /mm

Given : Diameter of the shaft, d = 100
mm Speed of the shaft, N = 250
rpm

Maximum shear stress, f; = 75 N/mm2

To find : 1) Power transmitted by the
shaft, P

SO’P'“‘ﬂ’fd3— 475 x1003=14.726 x 10°N-mm = 14.726 KN-m
Torq]d@ transmitted by the shaft,

Powergransmitted by the shaft,

p=2aNT _2xnx250x14.726 _ 385 53 K

60 60

|Result: 1) The power transmitted by the shaft, P = 385.53 |
KW

|Example : 7.5| (Oct.13)

A hollow shaft of external and internal diameters as 100mm
and 40mm is transmitting power at 120 rom. Find the power the shaft
can transmit, if the shearing stress is not to exceed 50N /mm?,

Given : External diameter of the shaft, d; = 100 mm
Inter diameter of the shaft, d, = 40 mm
Speed of the shaft, N = 120 rpm

Allowable shear stress, f;= 50 N/mm?

To find : 1) Power transmitted by the shaft, P

0
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Solution :

Torque transmitted by the hollow circular

shaft, &;—dﬁ’} 50 __ 100*-
T= 10"  Txf 4 16

- 9.566 x 105 N-mi 2 9.566 KN-m

Power which can be transmitted by the
shaff, _ 21N T _2x1x120x9.566 _

60 60 120.21 K
|Result: 1) Power transmitted by the shaft, P = 120.21 |

KW

A solid circular shaft of 100mm diameter is transmitting 120KW
at 150 rpm. Find the intensity of shear stress in the shaft.

Given : Diameter of the shaft, d = 100 mm
Power transmitted, P = 120 KW
Speed of the shaft, N = 150 rpm

To find : 1) Intensity of shear stress, f;

Solution :
Power transmitted by the shaft,
P= 2aANT
60

T=Lx60 __120x60 _ 7 ¢39 KN-m = 7.639 x 106 N-mm
2xaxN 2 x %150

Also, torque transmitted by the shaft,
=7fd3
16

16 xT 16 x

— = - 2
fs—ﬂ7€6§9—x 1W - 38 905 N/mm |

|Result : 1) Intensity of shear stress, f, = 38.905 N/mmzl

(0ct.17)

A hollow circular shaft of 25 mm outside diameter and 20 mm
inside diameter is subjected to a torque of 50 N-m. Find the shear stress
induced at the outside and inside layer of shaft.

=
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Given : Outside diameter, d; = 25 mm
Inside diameter, d, = 20 mm
Torque transmitted, T = 50 N-m = 50 x 103 N-mm

To find : 1) Shear stress at outside
layer, fg;
2) Shear stress at inside layer, f,,
Solution :
4 _ 4
Polar mpmeﬂlt f)f%’[lertl? d-d =
T 25 2 ] = 22641.556
Wellmgv\;tha&,T— :>f——x§r
At the outside layer,r=rz= — —ﬁ 12.5
mm
Sl_lxl(}?’ 2-671-—1_556_)(125_ 27. 6N/mm
d
At the inside layer,r=r 5 2 =20, 10
mm 2

20 1§0 X
- |22.08 N/mm
st—] T2 = 535641.586 < 10=

Result : 1) Shear stress at outside layer, fy; = 27. 6 N/mm?
2) Shear stress at inside layer, ., = 22. 08 N/mm?

Example: 7.8

A hollow shaft is to transmit 200KW at 80 rpm. If the stress is
not to exceed 60N/mm? and internal diameter is 0.6 times of the
external diameter, find the diameter of the shaft.

Given: Power transmitted, P = 200 KW = 200x 10° N-mm/s
Speed of the shaft, H = 80 rpm
Allowable shear stress, f, = 60 N/mm2
Internal diameter, d, = 0.6 x External diameter (d;)

To find : 1) External diameter, d 2)
Internal diameter, d,

Solution :
Torqug transmiggt-bg the hollow circular shaft,
T= X f X
1 d,
6
d*- (0.6d;)*
_nx60 477 (06d) s q3N-mm

16 d; N
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Power transmitted by the

shaft 3
’ 21 x80x10.254d

2aNT _21x80x10.5540 0 43 .
60 60

200 x 10° = 85.904 d,3

P=

3_ 200 x 10°
17 785.90

d, = [182. 5 mm]d,= 0.6 x d; = 0.6 x 132.5 =

Result : 1) External diameter, d; = 132.5 mm
2) The internal diameter, d, = 79.5
mm

|Example : 7.9| (Apr.93)

A solid circular shaft has to transmit a power of 40KW at
120rpm. The permissible shear stress is 100N/mm?Z. Determine the
diameter of the shaft, if the maximum torque exceeds the mean torque
by 25%.

Given : Power transmitted, P = 40 KW
Shear stress, f; = 100 N/mm?
Maximum torque, T, ,, = 1.25 x Mean torque = 1.25 T ...,

=2.328x 10°

To find : 1) Diameter of shaft, d

Solution :
Power transmitted by the
shaft,

1 [)]imeaﬂ
P=
Trnea -Px60 __40x60 _31g3 KN-m =3.183 x 106 N-
2xaxN 2 % JI X

mm
=1.25x3.183 x 10°=3.979 x 10° N-mm

T= 138 x T

Torque transmitted by the shaft,

Tmax 1 6

=Sﬂd§:d3 16 x Tmax _ 16 x 3.979 x 10° _
7 fy nx100 547648806

d=[58.737 mm

Result : 1) Diameter of shaft, d = 58.737 mm

meaH

0
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|[Example : 7.19| (0ct.91, Oct.96)

Find the torque transmitted by (i) solid shaft of diameter 0.4m
(ii) hollow shaft of external diameter 0.4m and internal diameter 0.2m,
if the angle of twist is not to exceed 1° in a length of 10m. Take C =
0.8 x 10°N/mm?.

Given : Angle of twist, & =1°=1 x (t /180) = 0.01745
rad.
Modulus of rigidity, C = 0.8 x 105 N/mm?
Length of the shaft,] =10 m = 10000 mm

To find : 1) Torque transmitted, T
Solution :
(i) Solid shaft

Diameter of the shaft,d = 0.4 m = 400mm

Polar moment of inertia, ] =2 d4 =2 x 400%= 25.133 x 108 mm*

32 32

Relation for troque transmitted by the

shaft, T _C&

] 1

C& —— 08 H0 004745 x 25133108

T= X ] =

= 350910988 N-mm = 3.509 x 102KN-m = [350.9 KN-m

(ii) Hollow shaft

External diameter of the shaft, d; = 0.4 m = 400mm
Internal diameter of the shaft,d, = 0.2 m = 200 mm

Polar moment of inertia, | = ﬂ3 £d 4-d % =7 (400%-200%

=23.562 x 108 mm3

Relation for troqrue transmltged by the
shaft

I

C&
23.562 x 108
T= x]=

- 3548009908 Nomm = 3.289 x 102KN-m = [328.9 KNem
Result : 1) Torque transmitted by solid shaft, T = 350.9 KN-m
2) Torque transmitted by hollow shaft, T = 328.9 KN—

m O
[UAT=TV]  [P76 7]
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[Example : 7.11|
Find the angle of twist per metre length of a hollow shaft of

100mm external diameter and 60mm internal diameter, if the shear
stress is not to exceed 35N/mm>. Take C = 85 x 103N/mm?,

Length of the shaft,1 = 1m =
1000 mm External diameter, d; = 100
mm Internal diameter, d, = 60 mm
Maximum shear stress, f; = 35 N/mm2
Modulus of rigidity, C = 85 x
103N/mm?
1) Angle of twist, &

Given :

To find :
Solution :
Torque trans ileteqi hollow cir ~shaft,
1 4 % s x il =5.9816 x 109N-
T = f@ X fS >d1 mm 10

= .16
Polar moment of inertia, ] = ﬂ3£d 4-d Q) =21 (100*- 60%)
= 8.543 x 105mm*3

Relation for angle of twist,

T_C&
J ]
g Il 5.9816 x
~“Gd6x 1000  85x 103 x .
= 2BH1pPrad. = 8.235 x 1073 x ; = [0.272°

|Result: 1) Angle of twist in the shaft, & = |

0472°
[Example : 7.12|
A solid shaft of 1220mm diameter is required to transmit 200KW

at 100 rpm. If the angle of twist is not to exceed 2°, find the length of
the shaft. Take C = 90 x 103N/mm?.

Diameter of the shaft, d = 120 mm
Power transmitted, P = 200 KW
Speed of the shaft, N = 100 rpm

Angle of twist, & =2°=2 x (1t /180) = 0.0349 rad.

Modulus of rigidity, C = 90 x 103N/mm?

Given :

]
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To find : 1) Length of shaft, 1

Solution :
Power transmitted by the shaft, P = 26HON T
T=Px60 _ 200260 _ 191 KN.;m=19.1 x 106 N-mm
2xygxN 2xyux100
Polar moment of inertia, | = 32d4 52— x 120%=20.358 x 10°mm*
Relation for length of the shaft,
T_C&
: C& x ] 90 x 103 x 0.0349
1 | 20.358 % 10° 3347.878
T & mm
[ Result : 1) Length of shaft,P=3349.878 mm = 3.348 m |
[Example : 7.13] (Oct.04, Oct.13, Oct.18)

A solid shaft 20mm diameter transmits 10KW at 1200 rpm.
Calculate the maximum intensity of shear stress induced and the angle
of twist in degrees in a length of 1m, if modulus of rigidity for the
material of the shaft is 8 x 10*N/mm?2.

Given : Diameter of the shaft,d = 20 mm
Power transmitted, P = 10 KW
Speed of the shaft, N = 1200 rpm
Length of the shaft,]1=1 m = 1000 mm
Modulus of rigidity, C = 8 x 10*N/mm?

To find : 1) Shear stress, f, 2) Angle of twist,

&
Solution :
Power transmitted by the shaft,
p=2aNT
60
T=—Px60 __10x60 2
xJ x N 2
x J1x 1200

roraue ragued B Rk 7 5 5675 10 N-mm
- g 16x =[50.66 |
fs= 1700577 x 103 1% 203 = 2040

N/mm
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Polar moment of inertia, ] =2 d* =2 x 20*= 15.708 x 103mm*
32 32

|ﬁ
R0

Relation for angle of twist =

g Il 79.577 x
TGH3x 1000 g x10%4

_ 03 180 _
= = 32498 %40= 0.0633 x o

Result : 1) Shear stress induced, f, = 50.66 N/mm?
2) Angle of twist, & = 3.628°

— =

[Example : 7.14] (Apr.04)

Calculate the power transmitted by a shaft of diameter 150mm
at 120 rpm, if the maximum shear stress is not to exceed 80N /mmz.
What will be the angle of twist in a length of 10m? Take C = 0. 84 x
10°N/mm?.

Tven :  DIameter of the snarg, d = 150 mm
Speed of the shaft, N = 120 rpm

Maximum shear stress, f; = 80 N/mm2
Length of the shaft,1 =10 m = 10000 mm
Modulus of rigidity, C = 0.84 x 10°N/mm?

To find : 1) Power transmitted, P2) Angle of twist, &
Solution :
Torque transmitted by the shaft,
T= ﬂ1f6d3s= 4 %80 x 1503 =53.014 x 106 N-mm = 53.014 KN-m
Power transmitted by the shaft,

plE2aNT - 2xnx120x53.014 - re—go

60 60
Polar moment of inertia, ] =2 d* =2 x 150%=49.7 x 10°mm*
32

Relation for angle of twist =
&= T1 53.014 x 10°
~ &J10000 0.84 x 105 x

_ A49. 6_ 180 _
= = 4977448 = 0.127 x -

Result : 1) Power transmitted, P = 666.194 KW
2) Angle of twist, & =7, 276°
EUﬁl't' '—"IV'IE E"F’T.Q'"i
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|[Example : 7.15| (Apr.04)

Find the maximum torque that can be applied to a shaft of
80mm diameter. The permissible angle of twist is 1.5° in a length of 5m
and shear stress not to exceed 42N/mm?. Take C = 84 x 103N/mm?.

Given : Diameter of shaft,d = 80 mm
Angle of twist, & =1.5°=1.5 x (t /180) = 0.02618 rad.
Length of the shaft,1=5m =5000 mm
Maximum shear stress, f, = 42 N/mm?
Modulus of rigidity, C = 84 x 103 N/mm?
To find : 1) Torque that can be applied, T

Solution :
(a) Torque based on shear stress.

Ty = 1 .f d¥ =% x42x80° = [4.222 < 105 N-
mm

(b) Totque based on angle of twist
Polar mament of inertia, ] =2 d*=2 x 80% = 4.021 x 10°mm*
32 32
Relation for torque = = | ===

T,= C&x] _ 84 x 103 x 0.02618 x 4.021

6 5000
=11.769 x 10 N-mm

We shall apply the torque which is
lesser.

|Result : l'f) ! TForlc}uze thaPdan be a'ﬁ'f)'lllga, T=1.769 x 10® N- |

mm
[Example : 7.1¢| (0ct.89)

The external and internal diameters of a hollow shaft are
400mm and 200mm respectively. Find the maximum torque that can be
transmitted, if the angle of twist is not to exceed 0.5° in a length of 10m
and the shear stress is not to exceed 70N /mm?. Take C = 80 KN/mm?.

Given : External diameter, d; = 400 mm
Internal diameter, d, =200 mm
Angle of twist, & = 0.50= 0.5 x (1t /180) = 8.727x 10 3 rad.
Length of the shaft,1 =10 m = 10000 mm
Maximum shear stress, f, = 70 N/mm?
Modulus of rigidity, C = 80 KN/mm? = 80 x 103N/mm?

.
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To find : 1) Maximum torque that can be
transmitted, T

Solution :
(a) Torque gased on @f@raﬁ@% 0 ) 400% -
T, = 200* % f xd, 16

= [8.247 x 168 N-100|
(b) Torque BU¥ed on angle of

tWistplar moment of inertia, ] =3§ (d4-d%="~= (400*-

4
2007 =2.3562 x 109 mm34
T
Relation for torque = _Z L& |
T,= C&x] - 80 x 103 x 8,727 x 1073 x 2.3562
x 106 0x 103

= [1.645 x 108 N-mm

We shall apply the torque which is
lesser.

 Resuilt : 119 ToF e THatodin bd OfaNsmmted, T = 1. 645 x 108N- |

mm

[Example : 7.17] (0ct.03)
A solid shaft is subjected to a torque of 15KN-m. Find the

suitable diameter of the shaft, if the allowable shear stress is

60N/mm?. The allowable twist is 1° for every 20 diameters length of

the shaft. Take C = 80 KN/mm?.
Given : TOTqUe, T =I5 KN-Im = I5 X TU° N=Tm

Angle of twist, & = 1°=1 x (n /180) = 0.1745 rad.
Length of the shaft,1 = 20 x diameter (d)
Maximum shear stress, f, = 60 N/mm2
Modulus of rigidity, C = 80 KN/mm?= 80 x 103 N/mm?

To find : 1) Diameter of shaft, d

Solution :
(a) Diameter for strength

Torque transmitted, T = 6ﬂ £

d3 1
16 xT 16 x
3 16xT _ _ 6
dx: ]15<>f510-6 > 1.27324 x 10

d= | !58.385 I
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(b) Diameter for stiffness
59131‘ moment of inertia, ] = 4 44 =0.098175

23

Relation for diameter = I.

15 x 106 ___ 80« 103 x
0008745 g+ <V > d

EEERLLEA LI
d* d
at 152796 x10°_ 5 1889 x 105
69.8

d={129.84 mm

We shall provide a shaft of greater
diameter.

|Result: 1) Diameter bfsHAft, d<'199 .84 thm |

[Example : 7.1g| (Apr.01, Apr.15, Apr.17)

A solid shaft is transmitting 100 KW at 180 rpm. If the
allowable stress is 60N/mm?, find the necessary diameter for the shaft.
The shaft is not to twist more than 1° in a length of 3 m. Take C = 80

KN/mm-=.
Given : Speed of the shaft, N = 180 rpm

Power transmitted, P = 100 KW
Maximum shear stress, f; = 60 N/mm2
Angle of twist, & =1°=1 x (1t /180) = 0.01745 rad.
Length of the shaft,] =3 m = 3000 mm
Modulus of rigidity, C = 80 KN/mm?= 80 x 103 N/mm?

To find : 1) Diameter of shaft, d
Solution :
Power transmitted by the shaft, P = 2aANT
60
T=Bx60_100x60_ 53057 KN-m = 5.3052 x 106 N-mm
21N 271 %180
(a) Diameter for strength
Torque transmitted, T = 4
PE 16
q 16 x T S 16 x _
2302 x 10 T % 450319.36

d =§g.65 mm z|771;_@m|
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(b) Diameter for stiffness
(Pj’gr)lar moment of inertia, ] = 2

2
Relation for diameter = ]I =C&
Tx32_C&
nd#
T x32x1 5.3052 x 106 x 32 x )
d= = =116.128 x 10
3000 * & %80 x 103 x x

0.017454 =103.809 mm =

We shall provide a shaft of greater
diameter.

404
1UT

[Result : 1) Diameter of shaft, d = 109.76 mm |

[Example : 7.19|

A solid steel shaft of 60mm diameter is to be replaced by a
hollow steel shaft of the same material with internal diameter equal to
half of the external diameter. Find the diameters of the hollow shaft
and saving in material, if the maximum allowable shear stress is same

Jor both the shafts.
Given : Diameter of solid shaft, d =60 mm

External diameter of hollow shaft, d; = 0.5 x Internal diameter
(d2)
To find : 1) Diameters of the hollow shaft, d; and d,

2) Percent saving in material

Solution :

Torque transmitted by the hollow

shaft, 316 @14 -d4) nxf, . d
- 12 %O.Sd )a X—=
T,= 16 x f xdq1
Tr2xfx09375d°1§ e %
|Powets transmitted and allowable shear stress in both the cases are |
Tl = T2
same

1ﬂ6xfxs6o3= 4y £x09375d3

1 L]
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3
d3= goags= 230400

dl
d= [61.305mm]; @E305_ =

Area of the solid shaft, A = ﬂ4x d?=2 x 602=2827.433 mm?
Area of the hollow 2
shaft, - Ax(@?-ay=2 ﬁ(61.3052 - 30.6532) = 2213.799 mm?

Saving jn

material, As— Ay

_ _2827.433 - 2213.799
2 T00=—— x 100 = x [21.7%
A, 2827.433

Result : 1) External diameter of hollow shaft, d; = 61.305 mm
2) Internal diameter of hollow shaft, d,= 30.635 mm
3) Saving in material = 21.7 %

[Example : 7.29| (Apr.13, Apr.14, Oct.16)

A hollow shaft having inner diameter 0.6 times the outer
diameter is to be replaced by a solid shaft of the same material to
transmit 550KW at 220 rpm. The permissible shear stress is 80N /mm?.
Calculate the diameters of the hollow and solid shafts. Also calculate

the percentage of saving in material.
'Fglv 7 POWEr transmitied, P = 550 KW

Speed of the shaft, N = 220 rpm
Shear stress, f; = 80 N/mm?

To find : 1) Diameter of solid shaft, d
2) Diameters of hollow shaft, d; and d,
3) Percentage saving in material

Solution :
Power transmitted by the shaft, P = ZaNT
60
T=Ex60_550x60_ 53873 KN-m = 23.873 x 106 N-mm
2a1N2nx220

(a) Solid shaft

Torque transmitted, T = 4 f

PE 16

3 16xT 16 x

9= BRap 107 ax

d=[114.973

{B=1v priTa—7

1519802.383




(b) Hollow shaft

Torque transmitted by the hollow

shaft, o _(d_4— d 4) 1 %80 d 4_x(q_6d1)4
1 i @
T=16  xdx 16
23.873 x 106 = 13.672 43 = d

23.873 x 106 =13.672 43

3. 23.873x10°_
3o 22800 X7

1367 1746123.464
dy= [120.418

d,=0mmd, = 0.6 x 120.418 = [72.251 mm
Area of the solid shaft, A =f x d2 =24 x 114.9732 = 10382 mm?
Area of the hollow

shaft,y - ﬂ4x (d2-d2)=12 x4(126.4182 ~ 72.2512) = 7288.72 mm?
Saving jn
material, As- Ay

o x 100 = 10382 = 728872 , o
A 10382

Result : 1) Diameter of solid shaft,d = 114.973 mm

2) External diameter of hollow shaft, d; = 120.418
mm

3) Internal diameter of hollow shaft, d, = 72.251 mm
ing in material = 29.79 %
Example : 7.21 (Oct.92)

Compare the weight of a solid shaft with that of a hollow shaft
for the same material, length and designed to reach the same maximum
shear stress when subjected to same torque. Assume the inside diameter
of the hollow shaft equal to two third of the external diameter.

Solution :

Let, T = Torque transmitted by the shaft, f.= Maximum shear stress
1 = Length of the shaft
(a) Solid shaft

Let, d = Diameter of solid shaft
Torque transmitted by the shaft, T T6ﬂsf
d3
d3=16xT _ 5093 T

JIx fs (fs)
0
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d=17205 L+ 3

(fs)
Weight of the solid
shaft, 12
W, =plA; =plx 4J‘Id 2 =:J§l X4 [1.72%5
(f) ] , :
=2.3249 pl 3
P s)
(b) Hollow shaft

Let, d; = External diameter, d, = Internal diameter
Then, d2 = g d1 =0.667 dl

Torque transmitted by the hollow shaft,

ﬂ (da-d4)

A @667d)4 e !
T= 16 >d dq

T= 0157488fs<f3 16
d3=7
! 0.157488f, 3f97

dg-

e N

wlr—@

d=1.8518 T
: (fs)

T 3 T
d,=0.667 xd,;=0.667 x1.8518 . ~  _ 5
2 1 (fs) =1.235 (fs)

Weight of the hollow shaft,
W= plA =plxﬂ(g}2—1d2)

1 2 2
2 2 T 3 T
= lxﬂl{l.8518 ~ 3 _1235 %
T ()1 [ (fsi] )
2
3
= 1.4954 pl (S)

The ratio of weight of solid shaft to hollow

shaft,
W 2.3249

pl—(—)—- 1.5547

Result : 1) The ratio of weight of solid shaft to hollow shaft = 1.5547

=
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Unit-1V
Chapter 8.
SPRINGS

1. Introduction

A spring is a device which can undergo considerable amount of
deformation without permanent distortion. The general purpose of all
kinds of springs is to absorb energy and to release it as and when
required. Springs are also used to provide a means of restoring various
mechanisms to their original configurations against the action of some

external force.
1) Laminated or leaf 2) Coiled helical

1. Types 6fspeings springs

The%(};ﬁmgalamréwiﬁed as follows Badig GsPiiBgEsforms :
1) Laminated or leaf springs

==
L = |

Fig.8.1 Laminated or Leaf spring

A laminated spring consists of a number of arc shaped strips of
metal having different lengths but same width and thickness. They are
placed one over the other in laminations. The strips are bolted
together. The two types of laminated springs are :

(i) Semi - elliptical laminated springs
(it) Quarter - elliptical laminated springs.

Uses : Thsese springs are used in railway wagons, coaches and
road vehicles to absorb shocks.

2) Coiled helical springs
A helical spring is made up of a wire wound in helix form. The
following two types of helical springs are used.
i) Closely coiled helical spring ii) Open coiled helical spring
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Comparison of closely coiled helical spring and open coiled helical spring

Closely coiled helical spring

Open coiled helical spring

1) | The pitch of the coil is very small

The pitch of the coil is large

2)| The gap between the successive
turn is small

The gap between the successive
turn is large

3)| The helix angle is less (7°to 10)

The helix angle is more (>10°C)

4) [ Under axial load, it is subjected
to torsion only

[t is subjected to both torsion
and bending

5)| It can withstand more load

It can withstand less load

The helical springs are further classified as

—

I

e

I

@ Mg

7D
\

(a) Cempression Spring (h) Tension Spring (c) Torsion Spring

Fig.8.2 Coiled helical springs

(a) Compression springs

A helical spring is said to be a compression spring, if the coils

close when subjected to axial load and open out when the load is

removed.

Uses : These springs are used in automobiles and railway

coaches as shock absorbers.

(b) Tension springs

A helical spring is said to be a tension spring, if the coils open

out when subjected to axial load and closes when the load is removed.

Uses : These springs are used in spring balances and cycle

stands.

(c) Torsion springs or extension springs

The coils of torsion springs are fully compressed. Both the ends

of

the coil are straightened out. When one end is fixed and other end

Uses : These springs are used in mouse trap, automobile

starters, door hinges, etc.




3) Spiral springs or constant force springs

It consists of a uniform thin strip wound into a spiral shape.
The outer end is pinned. The inner end is wound on a spindle by
applying a torque. The
wound spring is released slowly over a period of time. It gives a

()

Fig.8.3 Spiral spring Fig.8.4 Disc spring

4) Disc springs or Belleville washer

It is a convex disc shaped spring with a hole at the centre. It can
be wused singly or in stacks to achieve a desired load. This spring
requires less space for installation. It can withstand a very large load.

Uses : These springs are used in clutches, high pressure valves,
drill bit shock absorbers, etc.

8.3 Closely coiled helical spring subjected to an axial load
Consider a closely coiled helical spring subjected to an axial

load as shown in the fig.8.5.

Let, d = Diameter
of the spring wire R = Mean
radius of the spring coil 1
= Number of turn
C = Modulus of rigidity of spring material
W = Axial load the spring

f,  =Maximum shear stress induced in the wire due to
twisting

& = Angle of twist in the spring wire and

0 = Deflection of the spring due to axial load
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W
Fig.8.5 Closely coiled helical spring

Twisting moment on the coil due to the axial load, T=W.R - - -

- T= 4 3
(\}\)e know that, £d16 °

~WR=2fd3
16
f=16 WR
s nd3
Length of the wire,l =21 R.H

From the equation, T _ &

] 1
g=T1_WRx21RH

C A 44
J Cx 33
_64W R%H
cd*
2
Deflection of the 5=R& =R x 64 Wi{ H
spring, Cd
64 W R°H
__ gt

2



8.4 Stiffness of the spring
The stiffness of the spring is defined as the load required to
produce unit deflection. It is denoted by ‘s’
cd*
5= 4 " 64 Rn
- Wawrdn
It is also known as springQ&lﬁstant.

8.5 Resilience or strain energy stored in a closely coiled
helical spring.
Energy stored = Average load x Deflection
W 64 WR3H 32 W2R3H

X

T2 g C g

8.6 Applications of springs

1) To apply forces and controlling motion, as in brakes and clutches.

2) Measuring forces, as in spring balances.

3) Storing energy, as springs used in watches and toys.

4) Reducing the effect of shock and vibrations in vehicles and machine
foundations.
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(SOLVED PROBLEMS)

| Example: 8.1| (Apr.89, Oct.90)

A closely coiled helical spring of alloy steel wire of 10mm
diameter having 15 complete turns with the mean coil diameter as
10mm. Calculate the stiffness of the spring. Take C = 90 x 103 N/mm?2.

Given : Diameter of wire, d = 10 mm
Mean diameter of coil, D = 100 mm
Number of turns, H = 15
Modulus of rigidity, C = 90 x 103

2
To find : N/ mnll) Stiffness of

spring, s
olution :

4
The stiffness of spring, SZ: cd ke =

64®3x 10* 64 x
|Result: 1) Stiffness of spriné‘,usoﬁ‘ﬂsLJ N/mm |

| Example: 8.2| (Oct.03)

Calculate the modulus of rigidity of a spring of 10 turns 65mm
mean diameter and wire of 6.5mm diameter. The spring compresses

10mm under a load of 70N.

Given : Number of turns, H
=10 Mean diameter of coil, D = 65 mm
Diameter of wire, d = 6.5 mm

Load, W=70N
Deflection, 8 = 10 mm
To find : 1) Modulus of rigidity, C
Solution :

Mean radius, R = DZ: 65 _ 325 mm
64 WR3n
cd*

3 3
_ 24];\”:]{: 64 x 70 x 32.5 |86.154><103
dA 10 x N/mm?
Result : 1) Mddulus of rigidity, C = 86. 154 x 103 N/mm?|
iUmt— \Y/ | P8.1 |
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(0ct.92)

A closely coiled helical spring has the stiffness of 40N/mm.
Determine its number of turns when the diameter of the wire of the
spring is 10mm and mean diameter of the coil is 80mm. Take C = 0. 8 x
10 N/mm*.

Given : Stiffness, s =40 N/mm
Mean diameter of coil, D = 80 mm
Diameter of wire, d = 10 mm

Modulus of rigidity, C = 0.8 x 10> N/mm?

To find : 1) Number of turns in the spring, n

Solution :
Mean radius, R = D_80_ 40 mm
4
Stiffness, s = &
64 R3u 2

4
Cd 0.8 x _

H = =
643 10% 64 x

|Result: 1) Number of turns in the spring, 1 = |

(Oct.15)

A closely coiled helical spring made of 12mm steel wire having 12
turns of mean radius 60mm elongates by 15mm under a load. Find the
magnitude of the load if the modulus of rigidity is given as 7.5 x 10*
N/mm?*, ] ]

Given : Diameter of wire, d = 12 mm

Number fo turns, 5 =12
Mean radius of coil, R = 60 mm
Deflection of spring, 0 = 15 mm
Modulus of rigidity, C = 7.5 x 10* N/mm?

To find : 1) Magnitude of load, W

Solution :
64 WR3H
Deflection of spring, 0 = ——————
pring cd?
dxCd* 15 x 7.5 x 10% x
w= = = 140.63 N

Result : 1)1lélagnitude of load, W =140.63 N |
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| Example: s.5| (Apr.01, Oct.13)

A closely coiled helical spring is to carry a load of 100KN. The
mean coil diameter is 15 times that of the wire diameter. Calculate
these diameters if the shear stress is limited to120N /mm?.

Given : Load, W = 100KN =100 x 103 N
Shear stress, f, = 120 N/mm?

To find : 1) Diameter of wire,d 2) Diameter of coil, D

Solution :
Let, d = Diameter of wire ; D = Diameter of coil
Then, D = 15 x d ; R=D-13d_754
2 2

Torque, T=W xR=100x 103x 7.5d=7.5x 10°d
Also, torque, T = 1£6 fod3 =2 x120xd3=23.562d3

~23.562d3=7.5x10%d

5
d% 7?;%20 =31830.91

d =[178.4mm|; D=15d=15x1784= [2676 mm

Result : 1) Diameter of wire, d =178.4 mm
2) Diameter of coil, D =2676 mm

| Example: 8.6| (Apr.04, Oct.14, Apr.18)

The mean diameter of a closely coiled helical spring is 5 times
the diameter of wire. It elongates 8mm under an axial pull of 120N. If
the permissible shear stress is 40N/mm?, find the size of wire and
number of coils in the spring. Take C = 0.8 x 10> N/mm?2.

Given : Deflection, d = 8 mm
Axial load, W =120 N
Shear stress, f; = 40 N/mm?
Modulus of rigidity, C = 0.8 x 105 N/mm?

To find : 1) Diameter of wire, d 2) Number of turns,

Solution : "

Let, d = Diameter of wire ; D = Diameter of coil
Then, D=5xd;R=2=2d 754

Torque, T =W xR=120x2.5d =300d
iUmt—IV | P8.3 |




Also, torque, T = 1ﬂ6 fod3 =2 x40xd3=7.854d3
~7.854d3=300d

d2= 33’6 - 38.197
d= ; R=25d=25x%x6.18= [15.45 mm
3
Relation for number of turns = o %
Cd*x 8 0.8 x 105x
= = J 96% 33
6416/ RB 64 x 120 x 53]

Result :ﬂ’fDiameter of wire, d = 6.18 mm
2) Number of turns, 1 = 33

Example : 8.7 (Oct.02, Apr.14, Oct.16, Apr.17)

A closely coiled helical spring made of steel wire of 10mm
diameter has 10 coils of 1220mm mean diameter. Calculate the deflection

of the spring under an axial load of 100N and the stiffness of the spring.
Take C =1.2 x 10°N/mm?.

Given : Diameter of wire, d = 10 mm
Number of turns, H = 10

Mean diameter of coil, D = 120 mm

Axial load, W =100 N
Modulus of rigidity, C = 1.2 x 10° N/mm?

To find : 1) Deflection, 0 2) Stiffness, s
Solution :
Mean radius, R = D_120_ =60 mm
2 2
3 3
Deflection, 0 = 64 WR = 641)(2102;560 =111.52 mm
2 % X
_W. 10
Stiffness, s = 1=61‘— 3. 68 N/mm
6 11.52
|Result 1) Deflection, 6 =11.52 mm 2) Stiffness, s = |

Design a closely coiled helical spring of stiffness 20N/mm
deflection. The maximum shear stress in the spring material is not to
exceed 80N /mm? under a load of 600N. The diameter of the coil is to be
10 times the diameter of the wire. Take C = 85 x 103 N/mm?.

Oct.88, Apr.92, Apr.01, Oct.12, Apr.13
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Given : Stiffness of the spring, s = 20 N/mm
Shear stress, f; = 80 N/mm?
Axial load, W =600 N
Modulus of rigidity, C = 85 x 103 N/mm?

Solution :

Let, d = Diameter of wire ; D = Diameter of coil

Then, D=10d;R=2-10d _54
2 2
Torque, T =W xR=600x5d =3000d
J

Also, torque, T = 6 fd3=2 x80xd3=15.708d3

~15.708 d3= 3000 d

q2 _36ho _ 190.986
15.708

d=1382mm~ [14 mm)]
D=10d=10x14= [140mm]; R=5d =5x14=

4
Relation for number of turns = s L
_ 64 R3u
cd* 85 x -—
= = = 7 4‘4‘ x 8
1 a0y 147 64 x

Result : 1) Diameter'bf coil, D = 140 mm
2) Diameter of wire, d = 14 mm
3) Number of turns, H =8

A closely coiled helical spring is to be designed to carry an axial
load 2500N under a deflection of 70mm. The number of coil is to be
limited to 10 and the coil diameter is 10 times the wire diameter.

Calculate the diameter of the coil and shear stress produced in the
spring. Take C = 85KN/mm-*.
Given:  Axialload, W=2500N

Deflection, 0 = 70 mm
Number of coil, H = 10
Modulus of rigidity, C = 85 KN/mm? = 85 x 103 N/mm?

To find : 1) Diameter of coil, D 2) Shear stress, f,

Fonit ':I\TD' i P85




Solution :

Let, d = Diameter of wire ; D = Diameter of coil
Then, D=10d;R=2-10d _54

264 WR3H %4 x 2500 x (5d)3
Deflection, 0 = =
d* 85 x 10° x
70 = 2382.94
d

d =23!;%94=33.61mmz

D=10d =10x 34 =
Torque, T =W x R =2500 x (5 x 34) = 425000 N-mm

Also, torque, T =2 £ d3;
16

_16T _ 16 x 425000 _
f = T . = [55.07

N/mm
|Result: 1) Diametef df‘coil, D = 340 mm 2) Shear stress,f; = 55.07 |
N/mm?

|[Example : 8.10| (0ct.92)

A closely coiled helical spring has to absorb 50N—m of energy
when compressed by 50mm. The coil diameter is 12 times the wire
diameter. The number of coil is 10. Determine the diameters of the wire
and coil, if C =0.08 x 10N/mm?.

Given : Energy absorbed = 50 N-m =50 x 103
N-mm Deflection, 6 = 50 mm
Number of coil, H = 10
Modulus of rigidity, C = 0.08 x 10®N/mm?

To find : 1) Diameter of coil, D 2) Diameter of wire,

Solution : d

Let, d = Diameter of wire ; D = Diameter of coil
Then, D=12d;l§=D=Ld =64

Energy absorbed by the coil = Average load x
deflection
50 x 103 =¥ x50
2% 50 x 103

W= ———=2000N
50
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64 WR3H _ 64 x 2000 x (6d)3 x

Deflection, 0 = =
cd4 10 0.08 x 106 x
50 = 3486
d
d =%= 69.12 ~

D=12d=12x70=

|Result: 1) Diameter of coil, D =840 mm 2) Diameter of wire, d = 70 |

mm
|[Example : 8.11f (Oct.03, Oct.17)

A truck weighing 30KN and moving at 5Km/hr has to be
brought to rest by a buffer. Find how many springs, each of 18 coils will
be required to store the energy of motion during compression of
200mm. The spring is made out of 25mm diameter steel rod coiled to a
mean diameter of 240mm. Take C = 0.84 x 10°N/mm?.

Given : Weight of the truck, W; =30 KN =30 x 103N

3,103
5x10—x10=1388.889

Velocity of the truck, u = 5Km/hr
_ 60x60 mm/s

Number of coil, 1 = 18
Deflection, 0 = 200 mm
Diameter of wire, d = 25 mm
Diameter of coil, D = 240 mm
Modulus of rigidity, C = 0.84 x 10°> N/mm?

To find : 1) Number of springs

Solution :

2 2
Kinetic energy stored in the
W, u? U3
g §§g8§89; —ogr - 295 10°N-mm
Let. W = Axial load 3&on each spring
64 WR3H
cd*
_ Cd*xd _ 0.84x10°x25%x 200
64 R3u 64 x 1203x 18

K.E =

Then deflection, 0

=3296.65 N
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Energy stored in each spring = Average load x deflection

=W, 5329665, 700 =329665 N-mm
2 2

Kinetic energy stored in the

No. of springs =
pring trigikergy stored in each

2. 58T goe
=== =8.95%
3296.6 IE'
|Result: 1) Number olfkprings required = |

9
|[Example : 8.12] (Oct.04, Oct.16)

A weight of 150 N is dropped on to a compression spring with
10 coils of 12 mm diameter closely coiled to a mean diameter of 150
mm. If the instantaneous contraction is 140 mm, calculate the height of
drop. Take C = 0.8 x 10°N/mm?2.

Given : Weight dropped on the spring, P =150 N
Number of turns, 5 = 10

Deflection, d = 140 mm
Diameter of wire,d = 12 mm
Diameter of coil, D = 150 mm
Modulus of rigidity, C = 0.8 x 10> N/mm?
To find : 1) Height of drop of weight, &

Solution :

2 2
Let, i = Height of drop of weight before strike

Potential energy stored in the weight,
=P (h +0l) =150 (h + 140)

Thel'r?,td‘é\%lezzc% re}} éogd)édlv&%xeach spring

cd*
_ Cd*xd _ 0.8x10°x 124_x8154f£16 N
64 R3u 64 x 753 x

Energy storedli} spring = Average load x deflection

=W, 5-86016, 140-60211.2 N-mm
2

N
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After striking,

|the potential energy stored in the weight is lost to compress the
spring.
-~ Potential energy stored in weight = Energy stored in
spring

150(h + 140) = 60211.2
h+140=802112 _ 461 408 mm

h=401208 - 140 = [261. 408 mm

Result : 1) Height of drop of weight, h = 261.408 mm|
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Unit-V

Chapter 9. SHEAR FORCE AND BENDING
MOMENT DIAGRAMS

1. Beam

Beam is a structural member which is subjected to a system of
external forces acting perpendicular to its axis.

Whenever a beam is subjected to vertical loads it bends due to
the action of the load. The amount with which a beam bends, depends

upon the type of loads, length of the beam, elasticity of the beam and
the type of beam.

1. Classification « @ )

(a) Cantilever beam

DN

7
4
V4 (b) Simply supported beam

4
%
é E

(¢) Overhanging beam

1 7
4 %

(d) Fixed beam

e A

(e) Continuous beam
Fig.9.1 Types of beam

The beams are generally classified according to the supporting
conditions as follows.

1) Cantilever beam 2) Simply supported beam 3)
Overhanging beam
4) Fixed beam 5) Continuous beam

1) Cantilever beam
If one end of the beam is fixed and the other end is free, then

such type of beam is called cantilever beam.
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2) Simply supported beam
If both the ends of the beam are made to rest freely on
supports, then such type of beam is called simply supported beam.

3) Overhanging beam

If the ends of the beam are extended beyond the supports in a
simply supported beam, then it is called as overhanging beam.
4) Fixed beam

If both the ends of a beam are rigidly fixed or built into the
walls, then it is called fixed beam.

5) Continuous beam
If a beam is provided with more than two supports, then itis
called as continuous beam.
i”"’

(a) Point load or concentrated load

9.3 Typpc nf laading

w per unit length

(b) Uniformly distributed load (wdl)

(¢) Uniformly varying load (uv/)

Fig.9.2 Types of loading

A beam may be subjected to the following types of loads.
1) Point load or concentrated load.
2) Uniformly distributed load (udl).
3) Uniformly varying load.

1) Point load or concentrated load
If a load is acting exactly at a point in the beam then it is called

point load or concentrated load.
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2) Uniformly distributed load (udl)

If a load is spread over the beam in such a way that its
magnitude is same for each and every unit length of the beam, then it is
called uniformly
distributed load (udl).

3) Uniformly varying load

If a load is spread over the beam in such a way that its
magnitude is gradually varying within an unit length of the beam, then
itis called uniformly varying load.

4. Shear force
The shear force at a cross section of beam may be defined as
the unbalanced vertical forces to the left or right of the section. It is

denoted as SF.

4. Bending moment
The bending moment at a cross section of a beam may be
defined as the algebraic sum of the moments of the forces to the left or

right of the
section. It is denoted as BM.

4. Sign conventions.

Shear forc X X
C i ]‘ the beam.
All ' i
the upwar ! ! ird forces
to the rigl | |
X X
(+ve) SF ~ve) SF

Fig.9.3 Sign convention of shear force
All the upward forces to the right of the section and all the
downward forces to the left of the section cause negative shear force.

Bending moment

L Conmmmey

(+ve) BM ~ve) BM

Fig.9.4 Sign convention of bending moment
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If the bending moment at a section is such a way that it tends to
bend the beam at that point to a curvature having concavity at the top
is taken as positive bending moment. The positive bending moment is
often called as sagging moment. The right anti-clockwise moment and
left clockwise moment are taken as positive moment.

If the bending moment at a section is such a way that it tends to
bend the beam at that point to a curvature having convexity at the top
is taken as negative bending moment. The negative bending moment is
often called as hogging moment. The right clockwise moment and left
anti—clockwise moment are taken as negative moment.

9.7 Relationship between load, shear force and bending moment

E W per unit length
M / M+dM
Y
P Q
x dx: F+dF

Fig.9.5 Relationship between load, SF and BM.

Consider a beam carrying a udl of r per unit length. Let us
consider a portion PQ of length dz and at a distance z from the left
hand support of the beam as shown in fig.9.5. Total load acting on the
beam length PQ is equal tor. dz

Let, shear force at P = F, and shear forceatQ=F + dF
Bending moment at P = M and Bending moment at Q = M + dM
For equilibrium condition, XSF = 0

F +r.dz- (F +dF) =0
dF =r.dz

T ()
dz v

The above relation shows that the rate of change of shear force
is the rate of loading per unit length of the beam.

The force system in fig.9.5 may be simplified as shown in
fig.9.5(a). The total udl is considered to act as a point load at the middle
of the span over which it acts.
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M ‘_”'_”_T_’/ M+dM

P Q

x dx F+dF
Fig.9.5(a) Relationship between load, SF and BM.

Taking moment of forces and couples about P,

-(M+dM)+M-r.dXQ+£F +dF)dx=0

~M-dM+M-r (@2 g dx+dF.dx=0 2
Neglecting the small quantities
-dM+F.dz=0
dM = F.dz
dM _ g
dz

The above relation shows that the rate of change of bending
moment about a section is equal to the SF at that section.
ie. F

dM _
For maximum bending =0.7

mo grtéfore, the bending mome#% is maximum at a section where

shear force is zero.

9.8 Standard cases of loading
1) Cantilever beam with a point load at its free end

Consider a cantilever AB of length 1and carrying a point load W
at its free end B as shown in the fig.9.6. Consider a section X-X ata
distance x
from the free end.
Shear force :

SF at B = +W (Plus sign due to right downward)

SF at X-X = +W (** There is no load between B and X—X)

SF at A = +W (~ There is no load between X-X and A)

Bending moment :

Bending moment at X-X = - W z (Minus sign due to hogging)
The bending moment at any section is proportional to the
distance of that sectionifrgip the freelendg 5 |




7 X
]
7
A ! B
4
x
X
W (+) w
b LLL I
A Shear Force Diagram (KN) X B
A X B
Wi
e Bending Moment Diagram (KN-m)

Fig.9.6 Cantilever with a point load at its free end

AtB,z=0; ~-BM=-W x 0 =0
AtA,z=1, ~BM=-W x | =-W]

2) Cantilever beam with uniformly distributed load

X
Z w per unit length X
/ﬁﬁ,«&ﬁ;,\,\ﬁ,\,—v—\,\,—v—\
A%
/ l
2
X

wl (+)
A Shear Force Diagram (KN) . B
_A X B
”—_l-z
2

Bending Moment Diagram (KN-m)
Fig.9.7 Cantilever with uniformly distributed load
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Consider a cantilever AB of length 1 and carrying a uniformly
distributed load r per unit length over the entire length of the beam as
shown in the fig.9.7. Consider a section X-X at a distance z from the free

end.

SF at X-X = +wx (* Plus sign dugto right downward)
(Hogging moment)

varies according to a

Bending moment at X-X _ _
Frogn the above two €qﬁ‘3ﬁ’<‘)1¥srxﬁe25hear force
straight line law, while the bending moment varies according to
parabolic law.

Shear forgeB, x=0: At SF=0

X-X,x=x; At SF=rx
A x=1 SF=r1l
Bending moment :
At B, x=0; BM=0
2
AtX-X,x=x BM=- o
rl2

AtAx=1; BM=-,—

3) Simply supported beam with point load at the mid
span W £ g
C l ———-

I

I
R

\

,,[ 1
5 )
[l

C

-

—

i

X
Bending Moment Diagram (KN-m)
Fig.9.8 Simply supported beam with point load at mid

span. : : ,
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Consider a simply supported beam AB of length | and carrying
a pointload W at its mid point C as shown in the fig.9.8.

Let Ry and Ry be the reactions at the supports A and B. Taking

moment about the support A,
1

Rpx1=Wx=
BX X 2
RB:M:W
21 2
But,RA+RB=W
W
RA=W—2=2

Consider a section xWx at a distance x from
B.

She :
gﬁé%cfdrce atB _ _ %/_V (~* Minus sign due to right upward)

Shear force at X-X _ _ Zw

Shear force remains constant between B and C and is equal toW

2 w

ear force at C w "%
§ ear Force remainsyondtam between C and A and is _2
equal to
Shear forceatA _, W

-T2

Bending moment :
Bending moment at X-X _ | 2_V\@}é (= Plus due to sagging)
AtB,z=0; BM =0
AtC!X:Z'l; BM:+2X%LV‘_'4
At A, BM =0 WI

4) Simply supported beam with uniformly distributed load over entire
span
Consider a simply supported beam AB of length 1 and carrying a




_'i:
8
) ‘
L A
A X B
Bending Moment Diagram (KN-m)

Fig.9.9 Simply supported beam with udl over the entire length

Let Ry and Rgbe the reactions at the supports A and B. Taking
moment about the support A,

Rgxl=rlx, 1

RB = r12_=r—1
21 2

But, RA+ RB= I‘l

RA= rl—2 =I'_12

Consider a section X-X Bk a distance x from
B.

Shegﬁé%rrcfcfrce atB _ _ é;l( Minus sign due to right upward)

Shear force at X-X _ _ 21:; x

Shear forceatC _ _ 1_ _
(X_Z)__2+2_0

Shear force at A(z Il1) =, wh .
i wl
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Bending moment :

Bending moment at X-X _ pp,, — WZZZ Y yu—

AtB,z=0;BM =0 wiz
_1 w1l w 12_wli2_wl?_wl?
z=l.pm=wl, l_w l?_wlP_wl_wl2
AtGC 2) 2 202 2
12 i
AtB(z=1 BM:WT - 8
le =0 8

9.9 Hints for calculatéhg SF and BM at a section
1) Calculation of shear force
(a) Consider a section at which shear force is to be calculated

(b) Consider all the loads which act either to the right or to the left of
the section.

(c) Find the algebraic sum of the loads by using sign conventions for
shear force. This sum gives the value of shear force at that section.
2) Calculation of bending moment
(a) Consider a section at which bending moment is to be calculated

(b) Consider all the loads which act either to the right or to the left of
the section.

(c) Take moment of these loads about that section.

(d) Find the algebraic sum of the moments by using sign convention of
bending moment. This sum gives the value of bending moment at
that section.

(e) A concentrated load which passes through the considered section
have zero moment about that section.

(f) The bending moment at the free end of a cantilever beam and the
two supports of SSB will be zero.

(g) The udl is considered to act as a point load at the middle of the span
over which it acts.
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9.10 Hints for drawing SF and BM diagrams
1) Shear force diagram

(a) Ifthere is a point load at a section, the shear force line will suddenly
increase or decrease by a vertical line.

(b) If there is no load between any two sections, the shear force will
remain constant and shear force line will be a horizontal straight
line parallel to the base line.

(c) If there is a uniformly distributed load between two sections, the
shear force line will be an inclined straight line.

(d) When a point load acts along with a uniformly distributed load, the
SF diagram will have two inclined lines separated by a vertical
straight line ata point where point load acts.

(e) In a cantilever beam, the maximum shear force will occur at the
fixed end. In a simply supported beam, the maximum shear force
will occur at the supports.

2) Bending moment diagram
(a) The bending moment line in a region between two point loads will be
an inclined straight line.

(b) The bending moment line in a region of udl will be a parabolic line.

9.11 Point of contraflexure

Overhanging beam can be considered as combination of simply
supported beam and a cantilever beam. We know that the bending
moment in the simply supported beam is positive, whereas the
bending moment in the
cantilever beam is negative. It is thus known that in an overhanging
beam, there will be a point, where the bending moment will change
sign from positive to negative and vice versa. Such a point, where the

bending moment
changes sign, is known as a point of contraflexure.
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(SOLVED PROBLEMS)
CANTILEVER BEAMS

|Example : 9.1| (Apr.01)

A cantilever 2m long carries a point load of 3KN at its free end
and another point load of 2KN at a distance of 0.5m from the free end.
Draw the shear force and bending moment diagram.

Solution :
o 2KN 3KN
/]
7 i
7
A/ 5 C
f 1.5m 0.5m l
7, ) L}
= SKN
KN
(+)
A B C
Shear Force Diagram (KN)
A B <
W Bending Moment Diagram (KN-m)
ol
9KN-m

Fig.P9.1 SF and BM diagram [Example 9.1]

Calculation for shear force :

Shear force at C = +3 KN

Shear forceatB =+3 + 2=5KN

Shear force at A = +5 KN (There is no load between B & A)
Calculation for bending moment :

Bending momentatC=0

Bending moment at B=-3 x 0.5 =-1.5 KN-m

Bending momentatA=-3x2-2x1.5=-9 KN-m
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A cantilever of span 10 m carries point loads of 6KN and 8KN at
4m and 7m from the fixed end. Draw SF and BM diagram.

Solution :
SKN 6KN
7 4m i e
4
J\; = X D
A Tm l
7
Z 10m
11IKN 1HKN
6KN
(+)
A B £ D
Shear Force Diagram (KN)
A B € D
it Wy
¥ 18KN-m
//V
”
” . : (ay
y Bending Moment Diagram (KN-m)

L 4
62KN-m
Fig.P9.2 SF and BM diagram [Example 9.2]

Calculation for shear force :

SFatD = 0 ( There is no load)

SFatC=+ 6 KN

SFatB =+6+5=+11KN

SFatA =+ 11KN (~ There is no load between B and A)
Calculation for bending moment :

BMatD =0

BMatC=0

BMatB =-6 x3=-18 KN-m

BMatA=-6x7-5x4=-62KN-m
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| Example : 9_3| (Apr.89, Oct.96, Oct.03, Oct.12, Apr.17)

A cantilever 4m long carries a udl of 30KN/m over half of its
length adjoining the free end. Draw SF and BM diagrams.

Solution :
2 JOKN/m
7 o ,-< : ANV
A 8 «
Z
v 2m | 2m |
a ' '
N
e GOKN
N
(+)
A B ¢
Shear Force Diagram (KN)
A B C
LW
(+) |77 60KN-m
P
>
P
-
|
/// Bending Moment Diagram (KN-m)
' 3
180KN-m

Fig.P9.3 SF and BM diagram [Example 9.3]

Calculation for shear force :
SFatC= 0( Thereisno load)
SFatB =+30x2=+60KN
SFatA=+60KN ( There is no load between B
and A)

(30x2)KN
; 4 1m 1m "
7z
A
A2 Bl -
f 2m I 2m I
‘/‘ Ll




BMatC=0

BMatB = 2

-30x2x (2)= -60 KN-m

BMAtA = _30x2x2+,5=-180KN-m

| Example : 9.4| (Oct.88, Apr.92, Oct.03)

A cantilever of 2m long carries a point load of 20KN at 0.8mm
from the fixed end and another point load of 5KN at the free end. In
addition a udl of 15KN/m is spread over the entire length of the
cantilever. Draw the SF and BM diagrams.

Solution :

20KN 15KN/m SKN
0.8m

Ry
-~

2m

7.,
]

T 43KN

(+) 23IKN

A B C
Shear Force Diagram (KN)
A B [ %

] i

- (N-
(_) // 16.8KN-m

L/ Bending Moment Diagram (KN-m)
4

L
S6KN-m
Fig.P9.4 SF and BM diagram [Example 9.4]

Calculation for shear force :
SFatC=+5KN
SF at B (Due toudl) =+ 5+ (15 x 1.2) =+ 23 KN
SF at B (Due to pointload) = + 23 + 20 = + 43 KN
SFatA=+43 +(15 x 0.8) = +55 KN
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Calculation for bending moment :
BMatC=0

BMatB T-(5x1.2)- (15x1.2%

=

=-16.8 KN-m

(3o

BMAtA= (5 2)- (15 x 2x ) (20 % 0.8) = - 56 KN-m

| Example : 9.5| (Oct.92, Apr.13)

Draw the shear force and bending moment diagrams for the
loaded beam shown in the fig.P9.5

Solution :
Z 2KN/m KN 4KN
A é lB l( )

A/ : D
; 2m I 2m l Zm |
—/‘ Ll T { ;

. \I.I\I\T\
™
Tﬁ* TKN
(+)
4KN
A B ( D
Shear Force Diagram (KN)
A B 6 D
) /[' 8KN-
)))’ » m
/ : :
y/ Bending Moment Diagram (KN-m)
.
26KN-m

Fig.P9.5 SF and BM diagram [Example 9.5]

Calculation for shear force :
SFatD =0
SFatC=+4KN
SFatB =+4+3=+7KN
SFatA=+7+(2 x2)=+11KN
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Calculation for bending moment :

BMatD =0
BMatC=0
BMatB =-4x2=-8KN-m
BM at A = 2
a ~(4x4) - (3x2) - (2x2x ) F-26 KN-m

(Apr.93)

Draw the shear force and bending moment diagrams for the
loaded beam shown in the fig.P9.6

Solution :
7 20KN 20KN/m SKN
7 B £ /&VYY‘I D
.-‘\; - E
4 Im 1m I 1m I 0.5m I
./‘ L) Ll L) L)
45KN
25KN
(+)
SKN
A B C D E
Shear Force Diagram (KN)
A B C D E
2.5KN-m
17.5KN-m
42.5KN-m
(/ Bending Moment Diagram (KN-m)
87.5KN-m

Fig.P9.6 SF and BM diagram [Example 9.6]
Calculation for shear force :
SFatE=+5KN
SFatD=+5KN
SFatC=+5+(20x1)=+25KN
SFatB =+5+(20 x 1) + 20 = +45 KN
SF at A =+ 45 KN (*+ There is no load between B & A)
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Calculation for bending moment :
BMatE =0
BMatD =-5x0.5=-2.5KN-m ¢

BM at C =
a ~(5%1.5) - (20 x 1 x ) =~17.5 KN-m

l:

BMatB =
—(5 x 2. 5) - [20 x 1 x (1 + 2)] -42.5 KN-m

BMAtA=_(5x3.5) - 20 x 1x 2+ 5)1= 20 x 1) = -87.5 KN-m

SIMPLY SUPPORTED BEAMS

|Example : 9.7| (Apr.97)

A simply supported beam 5m span carries a point load of 20KN
at 2m from left support. Draw the shear force and bending moment
diagrams.

Solution :
20KN
C
A B
2m 3m
Ra=12KN Re=8KN
H | I1ZKN
(+
||| C B
1
A
(-)
L) SKLV
Shear Force Diagram (KN)
C o 24KN-m
(+)
A gy chling Moment Diagram (KN-m) B

Fig.P9.7 SF and BM diagram [Example 9.7]
Taking moment about
A, Ryx5=20x2
40
RB = 5 =
8 KN
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But, R,+ R, = 20 KN
R,=20-R; =20-8=12KN

Calculation for shear force :

Shear force at B = - 8 KN (f Minus sign due to right
upward) Shear forceatC=-8+20=+12KN

Shear force at A = +12 KN (£There is no load between C and A)

Calculation for bending moment :
Bending momentatB =0
Bending moment at C = + 8 x 3 = +24 KN-m
Bending moment at A=+(8 x5) - (20x2) =0
Example : 9.8 (Oct.04)

A simply supported beam of 10m span is loaded with point

loads of 20KN, 40KN at 2m and 8m from left support respectively. Draw
the shear force and bending moment diagrams.

Solution :
20KN 40KN
|c b
A B
2m I 6m | Zm
Rs=24KN Re=36KN
T # 24 KN
+ e
L1y T 4N B
v o111
(-)
Shear Force Diagram (KN) l | |
36KN
: 72KN
”_,_—4\ 2ZKN-m
C
48KN-m

(+)

B Bending Moment Diagram (KN-m) B

Fig.P9.8 SF and BM diagram [Example 9.8]
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Taking moment about A,
Rgx 10 = (40 x 8) + (20 x 2) = 360
360
Re=1p =36
But, R,+%\ = 60 KN
R,=60-R; =60-36=24KN
Calculation for shear force :

SFatB=-36 KN
SFatD=-36+40=+4KN
SFatC=+4+20=24KN
SF at A = + 24 KN (fThere is no load between C and A)

Calculation for bending moment :
BMatB =0
BMatD =+36 x2=+72 KN-m
BMat C = +(36 x 8) - (40 x 6) = +48 KN-m
BMatA=0

| Example : 9.9| (Apr.88, Oct.03, Oct.16)

A simply supported beam of effective span 6m carries three
point loads of 30KN, 25KN and 40KN at 1m, 3m and 4.5m respectively
from the left support. Draw the SF and BM diagrams. Also indicate the
maximum value of bending moment.

Solution :
Taking moment about A,
Rgx 6 =(30 x 1) + (25 x 3) + (40 x 4.5) = 285
285
Re= ¢ =47.5
But, R,+ B 30 + 25 + 40 = 95 KN
R,=95-R; =95-47.5=475KN

Calculation for shear force :
SFatB =-47.5KN
SFatE = -475+40=-75KN SF
atD=-75+25=+175KN SFat
C=+175+30=+47.5KN
SFat A=+ 47.5 KN ( There is no load between C and A)
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J0KN 25KN 40KN

e D E
A ’ B
im ! 2Zm ! 1.5m ! 1.5m
Ra=47.5KN Re=47.5KN
' ] | 2 47.5KN
(+) 17.5KN
L] E B
& € pf ILLILL[[[]]
7.5KN (-)
Shear Force Diagram (KN) [ I e
82.5K.\'-mA~‘ JLKN
AT T e 71.25KN-m
47.5KN-m
(+)
A ey Bc:ﬁling Moment Diagram (KN-m) B

Fig.P9.9 SF and BM diagram [Example 9.9]

Calculation for bending moment :
BMatB =0
BMatE =+47.5x 1.5=+71.25 KN-m
BMatD =+(47.5x 3) - (40 x 1.5) =+ 82.5 KN-m
BMat C = +(47.5 x5) - (40 x 3.5) - (25 x 2) = + 47.5 KN-m
BMatA=0

[Example : 9.19| (0ct.96, Oct.17)

A beam is freely supported over a span of 8m. It carries a point
load of 8KN at 2m from the left hand support and a udl of 2KN/m run
from the centre up to the right hand support. Construct the SF and BM
diagram.

e

Taking moment about

A R,x 8~ [ (2><42>< 4 +(8XZ)=64
64 Y
RB = 8 =2)]
8 KN
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But, R,+ Ry = (2 x 4) + 8 = 16 KN
R,=16-R,; =16-8=8KN

8KN 2KN/m
C D
A B
2m | 2m 4m
Ra=8KN Re=8KN
[[[{l€ D B
A
Shear Force Diagram (KN)
¢ 8KN
16KN-m D 16KN-m
™
(+)
A & 2T St B
Bending Moment Diagram (KN-m)

Fig.P9.10 SF and BM diagram [Example 9.10]

Calculation for shear force :

SFatB=-8KN
SFatD=-8+(2x4)=0KN
SFatC=  0+8=+8KN

SF at A = 8 KN ($There is no load between C and A)
Calculation for bending moment :

EM%EB = 9(8 x 4)- (2 x 4 x 2)= +416 KN-m

BMAtC=.(8x6)- 12 x4x 2+ - +f5 KN-m

BMatA=0
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| Example : 9. 11| (Oct.88, Apr.93, Oct.01, Apr.14, Oct.14, Apr.17)

A simply supported beam of length 6m carries a udl of 20KN/m
throughout its length and a point load of 30KN at 2m from the right
support. Draw the shear force and bending moment diagram. Also find
the position and magnitude of maximum bending moment.

Solution :
/—zum\vm KN
C
A B
6m

Ra=7T0KN Re=80KN
(+]
[ e B

A D V

Shear Force Diagram (KN)
122.5KN-m

b BOKN

20KN-
_~TT|D .(\'l Khiny

(+)

A 34 Bending Moment Dingrzﬁn {KN-m) | B
Fig.P9.11 SF and BM diagram [Example 9.11]
Taking moment about A,

Ryx 6~ ( 20 x & + =480
(30x4) 400
Re= o =80

But, R+ BSNX- (20 x 6) + 30 = 150 KN
R, =150 -R, = 150 - 80 = 70 KN

Calculation for shear force :
SFatB =-80 KN
SF at C (Due to udl) =-80 + (20 x 2) = -40 KN
SF at C (Due to pointload) = -40 + 30 =-10 KN
SFatA=-10+(20 x 4) =+ 70 KN
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Calculation for bending moment :

BMatB =0
BMatC = (80 « 2)- 20 x 2 xz)zz +120 KN-m
BMatA =0

To find the maximum bending moment :

The bending moment will be maximum at a point where the
force is eghemlrto zero. Let D be the point at a distance ‘z’ from B at
thlishear force is
Zero.

Shear forceatD =-80+20z+30=0

_39z=50
7= 2—02.5

The bending moment will be maximum at a distance 2.5 m
from the right support (B).
Maximum bending moment at

D (80x2.5)- (30x0.5) - (20 x 2.5 x 25

> )
=122.5 KN-m

[Example : 9.12| (Oct.04, Apr.18)

A simply supported beam of span 10m carries a udl of 20kN/m
over the left half of the span and a point load of 30KN at the mid span.
Draw the SFD and BMD. Find also the position and magnitude of
maximum bending moment.

Solution :
Taking moment about

A R, x10 ~ (30 x5)+(20x5 i) =400
* 400
Re= 1o =40

But, R,+ Ko 30 +(20 x 5) = 130 KN
R, =130 -R, = 130 - 40 = 90 KN

Calculation for shear force :
SFatB=-40 KN
SFatC=-40+30=-10KN
SFatA=-10+(20x5)=+90 KN
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20KN/m S0KN

B
Sm
Re=40KN
B
(-) ,
40KN
Shear Force Diagram (KN)
202.5KN-m___200KN-m
Lt iﬁ' C
(+)
A Bending Moment Diagram (Kf\'—rﬁi . B

Fig.P9.12 SF and BM diagram [Example 9.12]

Calculation for bending moment :
BMatB =0
BMat C = +(40 x 5) = +200 KN-m
BMatA=0

To find the maximum bending moment :

The bending moment will be maximum at a point where the
force is eshesdrto zero. Let D be the point at a distance ‘z’ from C at
thkeishear force is
Zero.

Shear forceatD =-40+30+20z=0
20z =30
BEETR
The bending moment will be maximum at a distance 5.5m from the
point B. Maximum bending moment at D
:+(4—0x5.5)—[30x0.5)—(20x0.5x %):ZOZ.SKN—m
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[Example : 9.13] (Apr.01)

A simply supported beam AB of 8m length carries an udl of
5KN/m for a distance of 4m from the left end support A. The rest of the
beam of 4m carries an udl of 10KN/m. Draw SF and BM diagrams.

Solution :
S5KN/m T10KN/m
E
A B
4m I 4m
RA=25KN Re=35KN
25KN
iy
) -\‘ 1
Ll ' JB
A D
Shear Force Diagram (KN)
35KN
6OKN-m C%61.25KN-m
(+)
A Bending Moment Diagram (KN-m) B

Fig.P9.13 SF and BM diagram [Example 9.13]
Taking moment about A,

R,x8 ~

10>t4><i + 5x4x ) =280
4+ 2

[
280 4
Re= g 515
But, R,+ BT (10 x 4) + (5 x 4) = 60 KN
R, = 60 - R, = 60- 35 = 25 KN
Calculation for shear force :
SFat B=-35KN
SFatC=-35+(10x4)=+5KN
SFatA=+5+(5%x4)=+25KN
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Calculation for bending moment :
BMatB =0
BMatC=+(35 X4)—(1OX4x2)é+6OKN—m
BMatA=0

To find the maximum bending moment :

The bending moment will be maximum at a point where the

shear force is equal to zero. Let D be the point at a distance ‘Zz’ from B
at which the shear force is zero.

Shear forceatD =-35+10z=0
_35

Z= 1=03.5

The bending moment will be maximum at a distance 3.5m from the
point B. Maximum bending moment at D

+(35><3.5)—(10x3.5x%2 )= 61.25 KN-m

[Example : 9.14]

(Oct.94)
Draw the SF and BM diagrams for the beam shown in the
fig.P.9.14 and also calculate the maximum bending moment.

Solution :

Taking moment about A,

Rgx5=(4x4)+(8x3x25)+(2x1)=78
78
RB: 5

But, R,+ R>2KN8 x 3) + 2 = 30 KN
R,=30-R; =30-15.6=14.4KN
Calculation for shear force :

SFatB =-15.6 KN
SFatD =-156+4=-11.6 KN

SF at C(due to udl) = - 11.6 + (8 x 3) = +12.4 KN
SF at C(due to point load) = +12.4 + 2 = 14.4 KN

SFatA=+14.4KN
( There is no load between C and A)
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|2KN :SK.\'/m |4KN
A ‘- L B

Im ! 3m ! Im
Ri=14.4KN Re=15.6KN
gy - | I 124KN
2 X
") ® A
‘\ CI“_S'-\._"I (_)
Shear Force Diagram (KN) 1L.6KN | | |
15.6KN
E 24.01KN-m
1] 5\\
A
14.4KN-m /] p 15.6KN-m
(}(
/ (+) \
1( / )}\
A Bending Moment Diagram (KN-m) B

Fig.P9.14 SF and BM diagram [Example 9.14]

Calculation for bending moment :

BMatB =0
BMatD =+(15.6 x 1) = +15.6 KN-m

BMatC=,(15.6x4)- (8x3x 5y 2 14.4 KN-m
BMatA =0

To find the maximum bending moment :

The bending moment will be maximum at a point where the
force is eshemlrto zero. Let E be the point at a distance ‘z’ from D at
thieishear force is
Zero.

Shear forceatE =-15.6+4+8z =0
~11.6 _
zZ= =1.45
8
The bending moment will be maximum at a distance 1.45m from the
point D. Maximum bending moment at E
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_ 3L15.6%2.45)- (4% 1.45)- (B x 1.45 XLZ-
= 24.01 KN-m
[Example : 9.15| (0ct.91)

Draw the SF and BM diagrams for the beam shown in the
fig.P.9.15 and also calculate the maximum bending moment.

Solution :
20KN/m Zsi“ 35?‘
A C D E B
3m ! 1m ! 1 ! 1m
Ra=59.167KN Re=60.833KN
« JOKN
(+) S
11111 c D R et
A e JLLELTT LY
0.833KN

e f 1
Shear Force Diagram (KN) 25.833KN l I |

60.833KN

87.499KN-
87.516KN-m F_ y

) e
ot ‘Iv—-q-_...D,\S\().(»b(rl\.\-nl

A A
\ [
A \\,i(»o.sssk,\‘-m

/ (+) N\

il

A Bending Mement Diagram (KN-m) B
Fig.P9.15 SF and BM diagram [Example 9.15]
Taking moment about A,
Ry x6 = (35x5)+(25x4) +( 20 %3 i) = 365
365
RB = 6 =
But, R,*R:833&KN 25 4 (20 x 3) = 120 KN
R,=120-R; =120-60.833 =59.167 KN

Calculation for shear force :
SFatB =-60.833 KN
SFatE =-60.833 +35=-25.83 KN
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SFatD =-25.833 +25=-0.833 KN
SF at C = - 0.833 KN ( There is no load between D and C)
SFatA=0.833+ (20 x3)=+59.167 KN

Calculation for bending moment :
BMatB =0
BMatE =+(60.833 x 1) = +60.833 KN-m
BMatD =+(60.833 x 2) - (35 x 1) =+ 86.666 KN-m
BM at C =+(60.833 x 3) - (35 x 2) - (25 x 1) =+ 87.499 KN-m
BMatA=0

To find the maximum bending moment :
The bending moment will be maximum at a point where the
shear force is equal to zero. Let F be the point at a distance ‘z’ from C

at which the shear force is zero.

Shear force at F =-60.833+35+25+20z=0
_0.833 _
Z="00 0.04165
The bending moment will be maximum at a distance 0.04165m from
theNpatiiGm bending moment at F

= +(60. 833 x 3. 04165)- (35 x 2. 04165) - (25 x 1. 04165) -
(20 x 0. 04165 x 0. 04165/2) = + 87.516 KN-m

[Example : 9.1¢|

A simply supported beam of span 7m is subjected to a udl of
10KN/m for 3m from left support and a udl of 5KN/m for 2m from the
right support. Draw the SF and BM diagrams. Also calculate the
maximum bending moment.

Solution :
Taking moment about A,
RBx7=[ 5x%xz + i) =105
5+ 2
105 10 x 3 x
RB = 8 =j)3

But, R,+ KN (5 x 2) + (10 x 3) = 40 KN
R, =40-R, =40 ~15=25KN

Calculation for shear force :
SFatB=-15KN
SFatD =-15+(5x2)=-5KN
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SFatC= -5KN SF
atA=+25KN

/—IOKN/m /—SK?\U"m

ALY Y YA\ D B

3m | 2m | Zm
1

RA=25KN Rp=15KN

LL} E IC D B
TTT

A |
SKN (=)

i) SKN

Shear Force Diagram (KN) 15KN

31.25KN-m_JE e

A1 T

i Sy
20KN-m

(+)

A Bending Moment Diagram (KN-m) B
Fig.P9.16 SF and BM diagram [Example 9.16]

Calculation for bending moment :
BMatB =0

BMatD =, (15 x2) - (5 x 2 x )% +20 KN-m
BMatC=+(15%x4) - (5x2x3)=+30KN-m
BMatA=0

To find the maximum bending moment :

The bending moment will be maximum at a point where the
force is exhedrto zero. Let E be the point at a distance ‘z’ from C at
thkeishear force is
Zero.

Shear forceatE =-15+(5x2) +10z 5L 5
= =05
10
The bending moment will be maximum at a distance 0.5m from the

point C. Maximum bending moment at E
T+(15x4.5)- [5x 2% 2.5+ 7)1 - (10x0.5x 5 =+31.25 KN-m
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Unit-V
Chapter 10. THEORY OF BENDING

1. Introduction

When a beam is loaded with some external forces, bending
moment and shear forces are set up. The bending moment at a section
tends to bend
or deflect the beam and internal stresses are developed to resist this
bending. These stresses are called bending stresses and the relevant

theory is called theory of simple bending.

1. Simple bending or pure bending
If a beam tends to bend or deflect only due to the application of
constant bending moment and not due to shear force, then it is said to

bein ¢

dx ———
state ¢ py nn B
\
1. 1
| RS
C

(a) (b)
Fig.10.1 Theory of simple bending

Consider a small length dx of simply supported beam subjected
to a bending moment M as shown in the fig.10.1(a). Due to the action of
the bending moment, the beam as a whole will bend as shown in
fig.10.1(b). Due to bending, the length of the beam is changed. Let us
consider a top most layer AB and bottom most layer CD. The layer AB is
subjected to compression and shortened to A’'B’ while the layer CD is
subjected to tension and stretched to C'D’.

Let us consider the beam length dx consists of large number of
such layers. The length of all the layers are changed due to bending.
Some of them may be shortened while some others may be stretched.
However, there exists a layer EF in between the top and bottom layers
which will retain its original length even after bending. This layer EF
which is neither shortened nor stretched is known as the neutral layer
or neutral plane.
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10.4 Assumptions made in the theory of simple bending
The following are the assumptions made in the theory of simple
bending.
1) The material of the beam is uniform throughout.

2) The material of the beam has equal elastic properties in all
directions.

3) The beam material is stressed within elastic limit and thus obeys
Hooke’s law.

4) The beam material has same value of Young’s modulus both in
tension and compression.

5) The radius of curvature of the beam is very large when compared
with the cross sectional dimensions of the beam.

6) The resultant pull or push on a transverse section of the beam is
Zero.

7) Each layer of the beam is free to expand or contract independently of
the layer, above or below it.

8) The cross section of the beam which is plane and normal before
bending will remain plane and normal even after bending.

5. Neutral axis

The line of intersection of the neutral layer with any normal
cross-
section of the beam is known as neutral axis of that section. It is denoted
as N.A. A beam is subjected to compressive stresses on one side of the

neuti & f axis.
Ther
5.
.| P e ot ) o
7 -
(a) Simply supported beam (b) Cantileyer beam

Fig.10.2 Bending stress distribution
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There is no stress at the neutral axis. The magnitude of stress at
a point is directly proportional to its distance from the neutral axis. The
maximum stress taken place at the outer most layer.

In a simply supported beam, compressive stresses are
developed above the neutral axis and tensile stresses are developed
below the neutral axis. But in cantilever beam, tensile stresses are
developed above the neutral axis and compressive stresses are
developed below the neutral axis.

7. Moment of resistance
The maximum bending moment that a beam can withstand

without failure is called moment of resistance.

From the theory of simple bending, we know that one side of
the neutral axis is subjected to compressive stresses and other side of
the neutral axis is subjected to tensile stresses. These compressive and
tensile stresses form a couple, whose moment must equal to the
external moment (M). The moment of this couple which resist the
external bending moment is known as moment of resistance.

4 To%ﬁygﬁgrfof flexural formula
y

| dx: |
My | A B WM
\ /7
A T T TFTTS &Jr
S SRR | PR ot et s Aol J .
E F |

Fig.10.3 Bending stress
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Consider a small length dz of a beam subjected to a bending
moment as shown in the fig.10.3. As a result of this bending moment,
this small length of beam bend into an arc of circle with O as centre.

Let, M = Moment acting at the beam
& = Angle subtended at the centre by the arc and
R = Radius of curvature of the beam
Now consider a length PQ at a distance 'y’ from the neutral axis
EF. Let this layer be compressed to P;Q after bending.

We know that, decrease in length of this layer,
6l=PQ-P;Q;=R&-(R-y)&

. y& 'y
Strain in the layer, e change in length - R&

_ Original
th
If ’f be the bending stress in t]ﬁg%ayer, R
then
£ = Ssreasn
f: Exe=E x R X
T=e_
y
R

Since E and R for a beam are constant, the bending stress is
directly proportionyal to the dfistancy f the layeJcr from the neutral
axis. 1 az

. :—2: —-_maz
b) To prove MI =2
Ju Je
F A
A ‘/ 7
¥y
N1 1A

Ji
Fig.10.4 Neutral axis
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Consider a small elemental area 6a of a beam at a distance ‘y’
from neutral axis as shown in fig.10.4

Let ’f be the bending stress in the elemental area.
The force on the elemental area = f x 6a

Moment of this force about neutral axis,
E 6M =f xbaxy -eememeeee-

Substitute, f Ri_n equation (1) @8]

=y)(

E

6M=y—I>{46axy=E

6a-y>
RY
By definition, moment of

resistance

Z R
We knothﬁa%%azyzz Momefé gj;inertia of the area of the

section about neutral axisie.I R

6ay2=

E
~M==x1
& (or)
M_E 0 S
|
f (2)
E
Also, yRR— (3) _______
Combining the equations (2) and (3)
M_T_E _
I y R

The above equation is called flexural equation.

10.9 Section modulus

The ratio of moment of inertia about the neutral axis to the
distance of the extreme layer from the neutral axis is known as section
modulus or

. Moment of inertial
modulus Fe@gé@modulus =

about N.A Distance of
We know that the axtreimmeiiay®efrdimgNshress occurs at the
outermost layer. Let y,,., be the distance of the outermost layer and
be the maximum stress.

.fmaz
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From the flexural formula, M or
fmaz= ITYmaz ( )

I
M =f ha y_zfmazXZ

maz
Where Z= Section modulus or modulus of section.

Section modulus of various sections
1) Rectangular section
Consider a rectangular section of width ‘b’ and depth

«

. 3
Moment of inertia about the neutral axis, I =l_)1%_

Distance of extreme layer from N.A, . d
maz~ 2
d3
_I 12— bd2
~ Section Modulus, Z = =4 —
ymaz -
2
2. Circular section 6

Consider a circular section of diameter
rdll . . . Vd4
Moment of inertia about the neutral axis, -

Distance of extreme layer from N.A, - d
Ymaz= 2
4
1 6V4ivd3
= Section Modulus, Z = =4 —
ymaZ -
2

1.10 Strength and stiffness of beam 32
Strength : The moment of resistance offered by the beam is

known as strength of a beam.
We know that, moment of resistance, M = f x Z

From the above relation, it is known that, for a given value of
bending stress, the moment of resistance depends upon the section
modulus. Therefore, if the value of Z is greater, the beam will be strong.
This ideal is put into practice, by providing beam of | -section, where
the flanges alone withstand almost all the bending stress.

Stiffness : The resistance offered by a beam against deflection
from its original straight condition is known as stiffness of the beam.
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(SOLVED PROBLEMS]

[Example : 10.1|

A steel wire of 5mm diameter is bent into a circular shape of 5m
radius. Determine the maximum stress induced in the wire. Take E = 2
x 10°N/mm?,

Given : Diameter of the steel wire, d =5 mm
Radius of circular shape, R=5m = 5000 mm
Young’s modulus, E = 2 x 10°N/mm?
To find : 1) The maximum stress induced, f, .,

Solution :
Distance of extreme layer from neutral axis (N.A.)

v _d_5
max
=25 mélEX

We know that, ; R

max

- - 2x105x25 ;
— RE< Ymax™ g = LL0ON/mm

|Result : 1) The maximum stress indudd in the wire, f,,,, = 100 |
N,/mmz
|[Example : 10.2] (Apr.93, Oct.02)

A steel rod 100mm diameter is to be bent into circular shape.
Find the maximum radius of curvature which it should be bent so that
stress in the steel should not exceed 120N/mmZ%TakeE = 2 x

10°N/mm?.
wven: Diameter of the steel rod, d = 100 mm
Maximum bending stress, f,,, = 120 N/mm?

Young’s modulus, E = 2 x 10°N/mm?

To find : 1) The radius of curvature, R

Solution :
Distance of extreme layer from neutral axis (N.A.)
_d_
M‘;@ﬁ% mm
We know that,¥z,.2 R
5
R= E %y 210" X (53333 mm

PQax 120

Result : 1) The radius of curvature, R = 83333 mml
E’Uﬁl't"—'\TJ”iJ i'"Pl'O.'I"E




[Example : 10.3|

A metallic rod of 10mm diameter is bent into a circular form of
radius 6m. If the maximum bending stress developed in the rod is
125N /mm?, find the value of Young’s modulus for the rod material.

Given : Diameter of the rod, d = 10 mm
Maximum bending stress, f,., = 125 N/mm?

Radius of curvature, R = 6 m = 6000 mm

To find : 1) Young’s modulus, E

Solution :
Distance of extreme layer from neutral axis
(N.A.]X _d_

ﬂf: 5% r{HEX
We know that,y=.. R

- R -6000x125 _
E= *f ax = 5 _|1.5X105 |
max

N/mm?
|Result: 1) Young’s modulus of the material, E = 1.5 x 10° N/mmzl

[Example : 104

(Oct.01)
Determine the resisting moment of a timber beam rectangular
in section 125mm x 250mm, if the permissible bending stress is
8N/mm?.
ven : Maximum bending stress, I, = 8 N/mm

Width of the beam, b = 125 mm
Depth of the beam, d = 250 mm

To find : 1) Resisting moment, M

Solution :
. . bd3 4
Moment of inertia, I :6 — =1.6276 x 10%nm
Distance of extreme lapdr frof0heutral axis
(N.A) 12 _d_250
Ymax 2 -~
= 1251\5}1m
We know that, 1—2: max_
- " 8 x1.6276
M= 8, ————=——=[10.417x10°N- |
max 12

- mm
|Result *IfResisting moment, M = 10. 417 x 105 N-mml

E’Uﬁl't"—'VLi] PI0.274




SIMPLY SUPPORTED BEAMS

| Example : 10.5| (Oct.92, Oct.14, Oct.15)

A simply supported beam is 300mm wide and 400mm deep.
Determine the bending stress at 40mm above N.A, if the maximum
bending stress is 15N /mm?.

Given : Width of the beam, b = 300 mm
Depth of the beam, d = 400 mm
Distance of layer from the N.A, y; = 40 mm
Maximum bending stress, f,,, = 15 N/mm?

To find : 1) Bending stress at a distance 40mm above the N.A, f;

Solution :
Distance of extreme layer from neutral axis (N.A.)
_d_400
Ymax -~
=200nfm  f
1If

__max
\fNe know tlgc, V& Yimax

max

o g

max

|Result1: 1) Bending stress at a distance 40mm above N.A, f1=3 |
N,/mmz
| Example : 10.6| (Oct.88, Oct.91, Oct.12, Oct.13)

A rectangular beam 200mm deep and 100mm wide is simply
supported over a span of 8m and carries a central point load of 25KN.
Determine the maximum stress in the beam. Also calculated the value of
longitudinal fibre stress at a distance of 25mm from the surface of the

beam.
~GIVen : WIdt ol the beam, D = 10U mim

Depth of the beam, d = 200 mm
Length of the beam, 1 = 8m = 8000 mm
Central point load, W =12 KN =12 x 103N

To find : 1) Maximum bending stress, f,,,
2) Bending stress at 25mm from the surface of the beam,

fy
P bd3 100 x
Solution : 2603 = 66.667 x 10°
Moment of inertia, I = = mm A
12 12
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Distance of extreme layer from neutral axis
(N.A) _d_200

max
In case of simply suzpfagpt&f‘?;eam subjected to a central point
load, Maximum bendingzmoment, M= Wi
4
_ 25x103x 8000
4

We know that, IM = fr;i

=50 x 10° N-mm

max
M 50 x 10 x 100 2
fmax= I XymaX: 66667)(106__ 75N/mm
To find the bending stress at 25mm from the surface of the beam :
The disftance of layer from N.A, =y; =100 - 25 =75 mm

fi: max
Y1 é]max 75
max
ft Xy = 56.25
ymax X,I‘yﬂs = N/mm
Result : 1) The maximum bending stress, f 0z = 75 N/mm?

2) Bending stress at 25mm from surface of beam, f;= 56.25

| Exampié : ]57| (Apr.14, Apr.15, Oct.15)

A simply supported beam of rectangular cross section carries a
central load of 25 KN over a span of 6m. The bending stress should not
exceed 7.5N/mm?. The depth of the section is 400mm. Calculate the
necessary width of the section.

Given : Central pointload, W = 25KN =25
x 103N
Length of the beam, 1 = 6m = 6000 mm
Bending stres, f ., = 7.5 N/mm ’

7 "max

Depth of the beam, d = 150 mm

To find : 1) Width of the beam, b
i, bd3 b x
Solution : 4803 —— =5333 x 106 b mm*

Moment of inertia, I = =
Distance of extreme Ihger from*feutral axis
N. d _ 400
( %}lax = =
=200 nim

2 funit—v- {P10.47




In case of simply supported beam subjected to a central point load,

Maximum bending moment, M = Wi

_25x103 x B 6
= W = 375 x 10° N-mm
We know that, M _ fax
I max
37.5x10° _
5.333x 106 200
6
b3 b= 37.5x10° x 200 _ [T87 5 mm

7.5 x 5.333 x 10°
|Result: 1) Width of the beam, b = 187.5 |

mm
| Example : 10.8| (Apr.87, Oct.89, Oct.04, Apr.17)

A rectangular beam 300mm deep is simply supported over a
span of 4m. What udl per metre, the beam may carry if the bending
stress is not to exceed 120N/mm?, Given I = 8 x 10 mm*.

Given : Depth of the beam, d = 300 mm
Length of the beam, 1 = 4m = 4000 mm
Maximum bending stress, ., = 120 N/mm?
Moment of inertia, I = 8 x 10® mm*

To find : 1) The of udl per metre, r

Solution :

Distance of extreme layer from neutral axis
(NA) _d_300

Ymax

In case of si?n%)?yosglpr;{)lorted beam subjected to a udl,

. 2 rl? r
M M == = =
aximum bending moment, ><84000_28— 2 x 10° N-mm
We know that, l}/l— = f‘g}“_
max
2x10°r _
8 x 10°
120 120 x 8 x 106
r= m: 3.2 N/mm =[3.2 KN/m
X X
|Result : 1) The udl per metre, w =3.2 |

KN/m

E’Uﬁl't"—'VD: {PI0.57




[Example : 10.9| (Apr.13)

A rectangular beam 60mm wide and 150mm deep is simply
supported over a span of 4m. If the beam is subjected to a uniformly
distributed load of 4.5KN/m, find the maximum bending stress induced

In the beam.
Given : Width of the beam, b = 60 mm

Depth of the beam, d = 150 mm
Length of the beam, 1 = 4m = 4000 mm
Uniformly distributed load, r = 4.5 KN/m = 4.5 N/mm

To find : 1) Maximum bending stress, .,

Solution :
. . bd?3 6
Moment of inertia, I :E —=16.875x 10
Distance of extreme la@é)r’frbw?fleutralgl)gls &
(N.A) _d_12
180 2
In case of 5/mp/y supported beam subjected to a udl,
2
Maximum bendlng moment, M = e ——3 1N 9 x 10°N-mm
- 5g¢ 40002
M fyg&ax
We know that, = ="™ 6
’ M 9 x10°x >
fmax=1 % max = 16.875 x 10° = 40 N/mm
|Result: 1) Maximum bending stress induced, ., = 40 |
N/mm#

[Example : 10.10|

A timber beam of rectangular section supports a load of 20KN
uniformly distributed over a span of 3.6m. If depth of the beam section
is twice the width and maximum stress is not to exceed 7N/mm?, find
the dimension of the beam section.

Given : Total load, W = 20 KN =20 x 103
N Length of the beam, 1= 3.6 m = 3600 mm
Depth of the beam, d = 2 x width of the beam (b)

Maximum bending stress, f, ., = 7 N/mm?

To find : 1) Depth of the beam, d 2) Width of the
beam, b

Solution : PZ‘g)g
Moment of inertia, I = 0
1

b x
=0.667 b*

{UNit T2/ fTPI0.67




Distance of extreme layer from neutral axis
(N.A.)y
fmgn 2

In case of simpli)y supported beam subjected to a

udl, 2 2
Maximum bending moment, M =—%—

_20x103x Wl

b o 6N-
3600 8 89><10 N-mm
We know that, M _ fnax
I ymax
9 x 10° _
7 i 9x10° xb
x (). i =9 x X
eg7i =210 6
b b°= ————=1.9276x 10
7 x 0.667
b={124.453

Result : 1) Depth of the' beam, d = 248.906 mm
2) Width of the beam, b = 124.453 mm

[Example : 10.11]

(Oct.02)

A beam of T-section flange 150mm x 50mm, web thickness
50mm, overall depth 200mm and 10m long is simply supported (with
flange uppermost) and carries a central point load of 10KN. Determine

the maximum fibre stress in the beam.

10KN

e

Sm Sm

——150——‘
3

@

S0

——

®

150

| sod—

Fig.P10.1 Maximum BM in T-sectional beam [Example. 10.11]

Given : Central point load, W = 10 KN =10 x 103N
Length of the beam,1 = 10m =10 x 103
mm

To find : 1) Maximum fibre stress, f .,

!'Uﬁl't"—'VD: i P10.77




Solution :
In case of simply supported beam subjected to a point load,

Maximum bending moment, M = WTI

3 3
_10x10 ;10X 10 25 x 105 N-mm
_ _a +a
Distance of extreme layer from N.A, ., ~ Yo %
1+
Y (50x150x75) + (150 x50 x  _ oo

~ T75) (50 x 150) + (150 x
Moment of ine§tij of the section about an axis passing through the

centroid and p?rallel to the kz)ottom face,
I= [Ig1+ ah 1} [Ig2+ ah ]

3
=0 % +(50 x 150)(125 - 75§ |
3
; [% + (150 x 50)(125 - 1759 |
=32.8125 x 10+ 20.3125 x 10°=53.125 x 10 mm*
We know that, M _ fmax
I ymax
6
£ o= My - 25x100x _reened
max ax 6 .
1129 53.125x 106 {7

|Result: 1) Maximum fibre stress, f, ., = 58.824 N/mm2|

|[Example : 10.12] (0ct.90)

A simply supported beam of span 6m carries uniformly
distributed load of intensity 40KN/m over half of the span. The cross
section of the beam is symmetrical I-section with following dimensions:
Overall depth=300mm, flange width=120mm, flange thickness=25mm,
web thickness=12mm. Evaluate the maximum bending stress induced in

st_;egegmai” g ; " o e .
: 7 Tmax

Solution :
Let R,and R;be the reactions at the supports of the beam.
Taking moment about A,
R,x 6 = (40 x 3 x 3/2) = 180

R, = =30 KN
oAt =V

Di { P10.87
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But, R,+ R, = (40 x 3) = 120 KN
R, =120 - RB =120 - 30 = 90 KN

40KN/m _J2s
c B
Im | 3m
RA=90KN Re=30KN
90KN 12 250
B
) 2]
_Jos
30KN I 120 I

Shear Force Diagram (KN)
Fig.P10.2 Maximum BM in I-sectional beam [Example. 10.12]

The shear force diagram for the beam is shown in the
fig.P10.2. The bending moment will be maximum at a point where the
shear force is equal to zero. Let D be the point at a distance x’ from
the point C at which the shear force is zero.

Shear forceatD =-30+40x =0
_ 30
= —
0.75 nf0
Maximum bending moment at D

=+(30 x 3.75) - (40 x 0.75 x 0.75/2)

= 101.25 KN-m = 101.25 x 10® N- mm
Moment of inertia of the section about an axis passing through the

centroid and parallel to the bottom face,

3 3
=, 120x300°  108x250°8, .0, 10 oo %
[ 712 171 ]

Distance of extreme layer from #eutral axis

(NA) 2 _y =300
max 2
= 150M1m
We know that, = = "Hax_
I ymax

-]

FORT =V

[ P10.97




fo= My 101.25 x 10°x 150 _ [117.369 |
max 1.294 x 108 N /n.qmz

|Result: 1) Maximum bending stress, f, ., = 117.369 N/mm?|

J _maz

|[Example : 10.13] (Apr.01, Oct.03, Oct.18)

A wooden beam of rectangular section 100mm x 200mm is
simply supported over a span of 6m. Determine the udl it may carry if
the bending stress is not to exceed 7.5N/mm?. Estimate the

concentrated load it may carry at the centre of the beam with the same

ermissible stress.
%_lven H VWIdth Ol the beam, D = 100 mim

Depth of the beam, d = 200 mm
Length of the beam, ] = 6m = 6000 mm

Maximum bending stress, ., = 7.5 N/mm?

To find : 1) The udl over the entire span, r

2) The point load at the centre for the same
stress, W
3
g’r‘rllent of inertia, I % ———— = 66.667x 10® mm*
Distance of extreme lapdr frp@dheutral axis
(N.A) 12_200
max
(a) In fa}g gfrsllrnﬁply supported beam subjected to a
udl/ 2 2
Maximum bending moment, M = S =4.5x10% N-mm
r& 60002

M _f
We know that, T = "9~
45x10°r _
66.667 x 106 7.
7,% « 66,667 x 10°
: =1.1111N/mm =|1.1111 KN/m
100 x 4.5 x 100
(b) In case of simply supported beam subjected to a point load,

Maximum bending moment, M = WTI =Wx6000_ 1500 w N-mm
We know that, M _ fimax
I ymax 4
1500 W -
86667 x 10°
10

0

O
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6
we 75 >1<0606-667"10 = 3333.35 N = [3.3333 KN
X

Result : 1) ™%dl over the entire span, w = 1.1111 KN/m
2) The point load at the centre of the beam, W = 3.3333

K
|[Example : 10.14] (0ct.93, Apr.13)

The moment of inertia of a rolled steel joist girder of
symmetrical section about N.A is 2460 x 10*mm®. The total depth of
the girder is 240mm. Determine the longest span when simply
supported such that the beam would carry a udl of 5KN/m run and the
bending stress should not to exceed 120N /mm?.

Given : Moment of inertia, | = 2460 x 10*mm*
Depth of the girder, d = 240 mm
Load,r =6 KN/m = 6 N/mm
Maximum bending stress, f._.. = 120 N/mm?

’ “max
To find : 1) The longest span, |
Solution :

Distance of extreme layer from neutral axis (N.A.)

Ymax
In ccfselg]p SIIPan}Iy supported beam subjected to a udl,

2 2
Maximum bending moment, M L £ 0.7512

M _ fna 6x 12

max 8

We know that,

07512
2460 x 10%
120 1 4
20 12= Mzgzlgxloéi
0.75

1=V32.8 106 = 5727.128 mm =

|Result: 1) The longest span, 1 =5.727 m |

[Example : 10.15| (Oct.92, Oct.94, Oct.12)

Find the dimensions of a timber joist span 10m to carry a brick
wall 0.2m thick and 4m height if the weight of the brick wall is
19KN/mm?3 and the maximum permissible stress is limited to 8N /mm>.
The depth of the joist is to be twice its width.

=
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Given : Thickness of the wall, t = 0.2 m = 200 mm
Height of the wall, # = 4m = 4000 mm
Length of the wall,1 = 10 m = 10000 mm
Weight of the brick wall = 19 KN/mm?
Depth of the joist, d = 2 x Width of the joist (b)
Maximum bending stress, f,,, = 8 N/mm?

To find : 1) Width of joist, b 2) Depth of joist, d

Solution :
Volume of the brick wall over full length,
V=Lengthxthicknessxheight
=10x0.2x4=8m?3
Total weight of the wall over full length, W = 19 x 8 = 152 KN
Load on the brick wall per unit length,
r=122_ 152 KN/m = 15.2 N/mm

10
Distance of extreme layer from neutral axis (N.A.)
Yma -
d™%b 2, 3 ;
Moment 02f inertia, | =% w =0.667 b*

In case of simply sup?orted beam subjected to a udl,

12 2
Maximum bending moment, M = - TlSzl'gx 108N-mm
8
M f .2x100002
We know that, T = "§F=

max

1.9 x 108

8
4 _ 8
8x 0.667.b% 5119 x 150° x b

p3o L9~ 10§
8 x 0.667

b=328.98mm=
d=2xb=2x330=

|Result : 1) Width,b=330mm  2) Depth, d = 660 mm

=35.607 x 10°

O
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[Example : 10.1¢| (Oct.96, Apr.04, Apr.05, Oct.17)

A cast iron water pipe 450 mm bore and 20 mm thick is
supported at two points 6 m apart. Assuming each span as simply
supported, find the maximum stress in the metal when (a) the pipe is
running full (b) the pipe is empty. Specific weight of cast iron is 70
KN/mm?3 and that of water is 9.81KN/mm?.

Given : Inside diameter of pipe,d, = 450
mm Thickness of the pipe, t =
20 mm
Length of the pipe,]1 = 6 m=6000 mm
Specific weight of castiron = 70 KN/mm3 =70 x 10~® N/mm?3
Specific weight of water = 9.81KN/mm?3 = 9.81 x 10"°N/mm?3

To find : 1) Maximum stress in the pipe when it is running full, f .,

2) Mmaximum stress in the pipe when it is empty, .,

Solution :

QubidectianaieaRbRippife, iqdz+c?(t=%f150 (2 x 20) = 490 mm

== (492)2 450 = 29531 mm?
Weight of the pipe per unit length, r; = A; x Sp. rt. of pipe
=29531x 70 x 107° = 2.067 N/mm

Cross sectional area of the water section,
Az——xd2 I, 4502 = 1.5904 x 105 mm?

Weight waater per unit length, r, = A, x Sp. rt. of rater
= #5904 x 10°> x 9.81 x 107% = 1.56 N/mm
(a) When the pipe is running full

Total weight per unit length, r =r; + r,=2.067 + 1.56 = 3.627 N/mm
In case of simply supported beam subjected to a udl,

2

Maximum bending moment, M L

_3.627 x 60002

=16.3215 x 10° N-

8
Distance of extreme layer from neutral axis
(N.A) d; B
max o - 490 -
245 mm

.
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Moment of inertia, I = 4 ( 14 )
6

d-d 4
- %&49@4_ 4504) = 8169 X 108 mm4

We know that, IM = fmax

max

B B 16.3215 x 10° x
fax™ IMymaX— = [4.895

2458169 x 108 N

(b) When the pipe is empty, only pipe weight is
considered.
Weight per unit length, r=r; = 2.067 N/mm
In case of simply supported beam subjectgd to a udl,
Maximum bending moment, M ——

8
2
= 2:067x6000°_ g 3015 & 105 N-mm

We know that, IM = fmax

max

fo- M, - 9.3015 x 10° x 245 :
max | Y max =12.79 N/mm

8.169 x 108

Result : 1) Stress in the pipe when it is running full, f ., =4.895
N/mm?

. . — = vi
CANTILZEI\S/ESSéIgRK/%pe when it is empty, f ., = 2.79 N/mm
[Example : 10.17] (Oct.92, Apr.13, Apr.14)

A cantilever of span 1.5m carries a point load of 5KN at the free
end. Find the modulus of section required, if the bending stress is not to
exceed 150 N/mm?.

Given : Load at the free end, W =5 KN =5000 N
Length of the beam,1=1.5m = 1500 mm
Maximum bending stress, f,,, = 150 N/mm?
To find : 1) Section modulus, Z
Solution :

In case of cantilever subjected to a point load at the free end,
Maximum bending moment, M = W1 = 5000 x 1500 = 7.5 x 10°N-mm

Section modulus, Z = Mo 50000 mm3

Result : 1) Section modulus, Z = 50000- mm3 |

QU L]
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[Example : 10.18] (Apr.90, Oct.16)

A cantilever beam of span 2m carries a point load of 600N at
the free end. If the cross—section of the beam is rectangular 100mm
wide and 150mm deep, find the maximum bending stress induced.

Given: Length of the beam,1=2 m=2000 mm
Load at the free end, W = 600 N
Width of the beam, b =100 mm
Depth of the beam, d = 150 mm
To find : 1) Maximum bending stress,
f

max

. bd3 100 x
Solution : 4593 — =28.125x 100 &

Moment of inertia, I = = mm

Distance of extreme lay%% from nél?tral axis
(N.A. d

wz%mm )

In case of cantilever subjected to a point load at the free end,
Maximum bending moment, M = Wl = 600 x 2000 = 1.2 x 10°N-mm

We know that, M _ fmax
I ymax

M 1.2 x 10°x

finax = 75 Ymax = 58125 x 106

|Result: 1) Maximum bending stress, f,,, = 3.2 |
N/mm?4

[Example : 10.19|

A cantilever beam is rectangular in section having 80mm width
and 120mm depth. If the cantilever is subjected to a point load of 6KN at
the free end and the bending stress is not to exceed 40N /mm?, find the
span of the cantilever beam.

Given : Width of the beam, b = 80 mm
Depth of the beam, d = 120 mm
Point load, W =6 KN = 6000 N

Maximum bending stress, f ., = 40 N/mm?

To find : 1) Span of the beam, |

O
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Solution :

. . bd3 6 4
Moment of inertia, ] =—— — =11.52 % 10° mm
Distance of extreme lay&ofi‘o}ﬁ(?lseutral axis
(N.A) _di2
Tty

In case of ::E/n6t/ler¥/1e£:rr1 subjected to a point load at the free end,
Maximum behding moment, M = W1 = 6000 |

We know that, IM = fmax

max

60001
1152x10% 60
6
=40 1= 40x11.52x10° 1280 mm = [1.28 m]

6000 x
|Result: 1) Span of the be2H, 1=1.28 m

[Example : 10.20|

A square beam 20mm x 20mm in section and 2m in long is
supported at the ends. The beam fails when a point load of 400N is
applied at the centre of the beam. What udl per metre will break a
cantilever of the same material 40mm width and 60mm deep and 3m

Ionsg.
(i) Simply supported beam

Given : Width of the beam, b = 20 mm
Depth of the beam, d = 20 mm

Length of the beam, 1 = 2m = 2000 mm
Central point load, W =400 N

To find : 1) Maximum bending stress,
f

max

3
Solwtigtient of inertia, | :% —  =1.333x10%m ¢

Distance of extreme lay&9 fr@¥ neutral axis
(N.A) _d12
0 2

In case of s_irr17pl{/nsrypported beam subjected to a point load,

mm
We know that, IM = f’;’“"—x

max 4

O
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M 2x10%x 10

fmax=1 X_YmaX: 1.222 x 104~

|Result: 1) Maximum bending stess, f ., = 150 N/mm? |

(ii) Cantilever beam
Given : Width of the beam, b = 40 mm
Depth of the beam, d = 60 mm
Length of the beam, ] = 3m = 3000 mm

To find : 1) Safe udl spread over the entire
span, r
Solution : 3
Moment of inertia, I =% — =72x10Tm *
Distance of extreme laﬂf@r’ﬁ@% neutral axis
(N.A) A
%Iﬁax -~

For the sam?rrzla%grlaflthe bending stress should be equal
» Maximum bending stress in the beam, f_,, = 150
N/mm?

In case of cantilever beam sulk\)/f'eq:fzi to a udl over entire
y}l)aa)ﬂmum bending moment, M== — =45x 10 % N-mm

M f Wx30002
We know = Max
that, ' VYinax 2
4.5 x 106r 150

72x105 30

5
r= 150x7.2x10°_ 58 N/mm = [0.8 KN/m

30 x 4.5 x 10°
|Result: 1) Safe udl spread over the entire span, w = 0.8 KN/ml

|[Example : 10.21] (Oct.95)

A beam of I-section 300mm x 150mm has flanges 20mm thick
and web 13mm thick. Compare its flexural strength with that of a
rectangular section of the same weight and same material, when the
depth being twice the width.

Solution :
Area of I-section = (300 x 20) + (13 x 110) + (300 x

20)
R T




Moment of inertia of the I-section,

| 300x150% _ (300 - o 4
[ 15743107 = proiRggt e
The section is symmetrical about X-X and Y=Y axis.
. _v 150
“ Ymax 2_ Y =
=75 mm

Section modulus of I section, Zl=—I

max

_ 52.542 % 106

=7.0056 x 10> 3
75

13 150 d

20

300 b
Fig.P10.3 Comparison of flexural strength [Example. 10.21]

Let, b =Width of the required rectangular section
d = Depth of the required rectangular section
Then, d = 2b

For same weight of two beams made of same material, the
area of two beams must be equal.

-~ Area of I section = Area of rectangular section
13430 = bd = b(2b) = 2b?

b2 = 13339 =6715
b=[81.945 mm
d =2b=2x81.945=1163.89 mm

. _ bd
Section modulus of rectangular section, Z, ——

81.945 x 6
= 16389% =3.668 x 10> mm3
The strength of the beam is proportional to its section
'_"Od"IuFlexural strength of [ ZyxEq
h Flextt@dBtrength of rectangular beamy " 72
x E, Z, = (~ For same material, E; = E,)

o
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7.0056 x 105
=22 =11.9099
3.668 x 10°

|Result: 1) The ratio of flexural strength of two beams = 1.9099|

[Example : 10.22]
Compare the weights of two beams of same material and of
equal flexural strengths, one being circular solid section and other being
hollow circular section. The internal diameter being 7/8 of the external

diameter.
Solution :

Let, D = Diameter of the solid beam
d, = External diameter of the hollow beam
d, = Internal diameter of the hollow beam

Then, d, = 4 d; = 0.875 d,

Area of solid beam = Z D2

4
Area of hollow beam = £ ( 12 )
4
d-d 2
=& 2 d2
[ 1 1
(0375 4d) .
= 41d%0.765625d 2] = f
[ 1 1] 4 15
4
Section modulus of solid beam, Z= ﬂ:)]))z3 x 0.234375d
a d*-4*
Section modulus of hollow beam, Z, =
J 4_ 1
= 2 g [di~ (0875d) | :
= —2 d1—05862d 32
= a0 g 17 Y ]
4 d
a

1 4_
0.4138d*==%
*93

0. 8738

Since both the beams have the same flexural strength, the
section modulus of both the beams must be equal.
Z1 = ZZ

2xD3=2x04138d3
32

1

D3=0.4138d 3 .
[ORT=V"7 PI0TTY ™7




Taking cube root on both sides,
D =0.7452 d;

Weight of two beams are proportional to their cross sectional areas.

Weight of solid beam _ Area of solid beam

Weight of hollow beam Area of hollow beam

DZ

=ﬂ—2
3 * 0-234375 4,

(0.7452

" §54375 d 2

0.5553d 2

=—————— 177369

= 0.234375 d 2

Result : 1) The ratio of weight of solid and hollow beams = |
2.369
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